989 resultados para stochastic control
Resumo:
This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.
Resumo:
Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
Theoretical developments on pinning control of complex dynamical networks have mainly focused on the deterministic versions of the model dynamics. However, the dynamical behavior of most real networks is often affected by stochastic noise components. In this paper the pinning control of a stochastic version of the coupled map lattice network with spatiotemporal characteristics is studied. The control of these complex dynamical networks have functional uncertainty which should be considered when calculating stabilizing control signals. Two feedback control methods are considered: the conventional feedback control and modified stochastic feedback control. It is shown that the typically-used conventional control method suffers from the ignorance of model uncertainty leading to a reduction and potentially a collapse in the control efficiency. Numerical verification of the main result is provided for a chaotic coupled map lattice network. © 2011 IEEE.
Resumo:
This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.
Resumo:
AMS subject classification: 90C31, 90A09, 49K15, 49L20.
Resumo:
Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.
Resumo:
The objective of this paper is to correct and improve the results obtained by Van der Ploeg (1984a, 1984b) and utilized in the theoretical literature related to feedback stochastic optimal control sensitive to constant exogenous risk-aversion (see, Jacobson, 1973, Karp, 1987 and Whittle, 1981, 1989, 1990, among others) or to the classic context of risk-neutral decision-makers (see, Chow, 1973, 1976a, 1976b, 1977, 1978, 1981, 1993). More realistic and attractive, this new approach is placed in the context of a time-varying endogenous risk-aversion which is under the control of the decision-maker. It has strong qualitative implications on the agent's optimal policy during the entire planning horizon.
Resumo:
We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.
Resumo:
We present a novel scheme for the appearance of stochastic resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. The entropic stochastic resonance, characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single molecules and nanodevices.