990 resultados para statistical reports


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title varies slightly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To enhance workplace safety in the construction industry it is important to understand interrelationships among safety risk factors associated with construction accidents. This study incorporates the systems theory into Heinrich’s domino theory to explore the interrelationships of risks and break the chain of accident causation. Through both empirical and statistical analyses of 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, the study investigates relationships between accidents and injury elements (e.g., injury type, part of body, injury severity) and the nature of construction injuries by accident type. The study then discusses relationships between accidents and risks, including worker behavior, injury source, and environmental condition, and identifies key risk factors and risk combinations causing accidents. The research outcomes will assist safety managers to prioritize risks according to the likelihood of accident occurrence and injury characteristics, and pay more attention to balancing significant risk relationships to prevent accidents and achieve safer working environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on mathematics anxiety. Gnaldi (2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning, basic numeracy skills, mathematics background and attitudes towards statistics. This work reports on some key relationships between these factors and in particular the importance of numeracy to statistical reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on maths anxiety. Gnaldi (Gnaldi 2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning ability, basic numeracy skills and attitudes towards statistics. This work reports on the relationships between these factors and in particular the importance of numeracy to statistical reasoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern sample surveys started to spread after statistician at the U.S. Bureau of the Census in the 1940s had developed a sampling design for the Current Population Survey (CPS). A significant factor was also that digital computers became available for statisticians. In the beginning of 1950s, the theory was documented in textbooks on survey sampling. This thesis is about the development of the statistical inference for sample surveys. For the first time the idea of statistical inference was enunciated by a French scientist, P. S. Laplace. In 1781, he published a plan for a partial investigation in which he determined the sample size needed to reach the desired accuracy in estimation. The plan was based on Laplace s Principle of Inverse Probability and on his derivation of the Central Limit Theorem. They were published in a memoir in 1774 which is one of the origins of statistical inference. Laplace s inference model was based on Bernoulli trials and binominal probabilities. He assumed that populations were changing constantly. It was depicted by assuming a priori distributions for parameters. Laplace s inference model dominated statistical thinking for a century. Sample selection in Laplace s investigations was purposive. In 1894 in the International Statistical Institute meeting, Norwegian Anders Kiaer presented the idea of the Representative Method to draw samples. Its idea was that the sample would be a miniature of the population. It is still prevailing. The virtues of random sampling were known but practical problems of sample selection and data collection hindered its use. Arhtur Bowley realized the potentials of Kiaer s method and in the beginning of the 20th century carried out several surveys in the UK. He also developed the theory of statistical inference for finite populations. It was based on Laplace s inference model. R. A. Fisher contributions in the 1920 s constitute a watershed in the statistical science He revolutionized the theory of statistics. In addition, he introduced a new statistical inference model which is still the prevailing paradigm. The essential idea is to draw repeatedly samples from the same population and the assumption that population parameters are constants. Fisher s theory did not include a priori probabilities. Jerzy Neyman adopted Fisher s inference model and applied it to finite populations with the difference that Neyman s inference model does not include any assumptions of the distributions of the study variables. Applying Fisher s fiducial argument he developed the theory for confidence intervals. Neyman s last contribution to survey sampling presented a theory for double sampling. This gave the central idea for statisticians at the U.S. Census Bureau to develop the complex survey design for the CPS. Important criterion was to have a method in which the costs of data collection were acceptable, and which provided approximately equal interviewer workloads, besides sufficient accuracy in estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that if two probability distributions D and E of sufficiently small min-entropy have statistical difference ε, then the direct-product distributions D^l and E^l have statistical difference at least roughly ε\s√l, provided that l is sufficiently small, smaller than roughly ε^{4/3}. Previously known bounds did not work for few repetitions l, requiring l>ε^2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.