955 resultados para statistical potentials
Resumo:
The aim of this study was to compare the effects of barbiturate, benzodiazepine and ketamine on flash-evoked potentials (F-VEP) in adult rabbits. A total of 36 animals were studied, 16 after pentobarbital endovenous (EV) inffusion, 10 after midazolam EV administration, and 10 after ketamine EV inffusion. Pentobarbital induced triphasic F-VEP, first negative (N1), secondpositive (P1), third negative (N2) waves, all with large amplitudes and P1 with well-defined morphology. Mean P1 latency was 33ms. Midazolam induced similar but less defind triphasic waves, with mean latency of 27ms. Ketamine induced poliphasic and poorly defined F-VEP, with mean first positive (P1) latency of 27ms. Statistical analysis showed more elongated latency for the pentobarbital group than the midazolam and ketamine groups. The results of this study suggest that the pharmacological effects of pentobarbital and midazolam on GABA neurotransmission in rabbit visual cortex may be different; another neurotransmission system, possibly cholinergic, may be involved. The ketamine effect seen in rabbit visual cortex seems to be different from pentobarbital and midazolam.
Resumo:
A statistical quark model, with quark energy levels given by a central linear confining potential is used to obtain the light sea-quark asymmetry, d̄/ū, and also for the ratio d/u, inside the nucleon. After adjusting a temperature parameter by the Gottfried sum rule violation, and chemical potentials by the valence up and down quark normalizations, the results are compared with experimental data available. © 2009 American Institute of Physics.
Resumo:
An improved statistical quark model, with quark energy levels given by a central linear confining potential, is used to obtain the light sea-quark asymmetry, d̄/ū, and also for the corresponding difference d̄-ū, inside the nucleon. In the model, a temperature parameter is adjusted by recent results obtained for the Gottfried sum rule violation, with two chemical potentials adjusted by the valence up and down quark normalizations. The results are compared with available recent experimental data. © 2010 American Institute of Physics.
Resumo:
We consider some existing relativistic models for the nucleon structure functions, relying on statistical approaches instead of perturbative ones. These models are based on the Fermi-Dirac distribution for the confined quarks, where a density of energy levels is obtained from an effective confining potential. In this context, it is presented some results obtained with a recent statistical quark model for the sea-quark asymmetry in the nucleon. It is shown, within this model, that experimental available observables, such as the ratio and difference between proton and neutron structure functions, are quite well reproduced with just three parameters: two chemical potentials used to reproduce the valence up and down quark numbers in the nucleon, and a temperature that is being used to reproduce the Gottfried sum rule violation. © 2010 American Institute of Physics.
Resumo:
The aim of this paper was to obtain normative data of auditory evoked potentials from 34 mixed breed dogs and evaluate the age influence. The animals were divided in two groups of different ages and auditory evoked potential was performed with a 85dB stimulus intensity. Group 1 included 16 dogs between 1 and 8 years of age, and group 2 included 18 dogs with over 8 years of age. The length and head diameter were measured and there was no statistical difference between the two groups. In group 1, mean latencies of waves I, III, and V were 1.13; 2.64, and 3.45ms, and the intervals I-III, III-V, and I-V were 1.51; 0.81, and 2.32 ms, respectively. In group 2, the mean latencies of waves I, III and V were 1.15, 2.62, and 3.55ms, and the intervals I-III, III-V, and I-V were 1.47, 0.93, and 2.40ms, respectively. The latencies observed in this study were similar to previous studies conducted by other authors. It was observed that significant differences were present for wave V and intervals III-V and I-V latencies when comparing groups with different ages, consequently this characteristic must be considered during BAEP result interpretation.
Resumo:
Osmotic potentials on water uptake and germination of Guazuma Ulmifolia Lam. (Sterculiaceae) seeds. This work was carried out in the Germination Lab. of the Department of Botany, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo State, Brazil. The aims of this work were to determine the water uptake curve and to evaluate the germination of Guazuma ulmifolia seeds subjected to different water potentials. For the water uptake curve, seven replicates of 50 pre-scarified seeds were placed onto paper moistened with 15 mL PEG 6000 solution under the potentials 0 (control), -0.3 and -0.6 MPa at 25o C in the darkness. For the germination assay, four replicates of 50 seeds were subjected to the same above-described conditions; however, one lot of seeds was modified when there was variation in the refractometric index, whereas the remaining ones were kept in the same solutions until the end of the experiment. All three phases of water uptake were detected under 0 and -0.3 MPa; however, phase II was prolonged under -0.6 MPa and germination was not observed. For 0 and -0.3 MPa, the adopted statistical models consisted of asymptotic (phases I and II) and exponential (phase III) functions, y = a*[1 - b*exp (-c*t) + exp (-d + e*(t - t0)]. For -0.6MPa, only the asymptotic function y = a* [1 - b* exp (-c*t)] was used since there was no evidence of germination. The germination final percentage and speed index were lower under -0.3 MPa, mainly when solutions were not replaced; besides, germination was not detected under -0.6 MPa, with or without solution replacement.
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
RATIONALE: Olanzapine is an atypical antipsychotic drug with a more favourable safety profile than typical antipsychotics with a hitherto unknown topographic quantitative electroencephalogram (QEEG) profile. OBJECTIVES: We investigated electrical brain activity (QEEG and cognitive event related potentials, ERPs) in healthy subjects who received olanzapine. METHODS: Vigilance-controlled, 19-channel EEG and ERP in an auditory odd-ball paradigm were recorded before and 3 h, 6 h and 9 h after administration of either a single dose of placebo or olanzapine (2.5 mg and 5 mg) in ten healthy subjects. QEEG was analysed by spectral analysis and evaluated in nine frequency bands. For the P300 component in the odd-ball ERP, the amplitude and latency was analysed. Statistical effects were tested using a repeated-measurement analysis of variance. RESULTS: For the interaction between time and treatment, significant effects were observed for theta, alpha-2, beta-2 and beta-4 frequency bands. The amplitude of the activity in the theta band increased most significantly 6 h after the 5-mg administration of olanzapine. A pronounced decrease of the alpha-2 activity especially 9 h after 5 mg olanzapine administration could be observed. In most beta frequency bands, and most significantly in the beta-4 band, a dose-dependent decrease of the activity beginning 6 h after drug administration was demonstrated. Topographic effects could be observed for the beta-2 band (occipital decrease) and a tendency for the alpha-2 band (frontal increase and occipital decrease), both indicating a frontal shift of brain electrical activity. There were no significant changes in P300 amplitude or latency after drug administration. Conclusion: QEEG alterations after olanzapine administration were similar to EEG effects gained by other atypical antipsychotic drugs, such as clozapine. The increase of theta activity is comparable to the frequency distribution observed for thymoleptics or antipsychotics for which treatment-emergent somnolence is commonly observed, whereas the decrease of beta activity observed after olanzapine administration is not characteristic for these drugs. There were no clear signs for an increased cerebral excitability after a single-dose administration of 2.5 mg and 5 mg olanzapine in healthy controls.
Resumo:
Meta-analysis, the statistical combination of results from several studies to produce a single estimate of a treatment effect or size of an association, continues to attract controversy. We illustrate and discuss the promises and limitations of meta-analysis. Meta-analysis of clinical trials can prevent delays in the introduction of effective treatments or lead to the timely identification of adverse effects. However, meta-analyses are liable to numerous biases, both at the level of the individual study and the selection of studies for inclusion in meta-analysis. The biases and confounding factors that threaten the validity of individual studies will also affect meta-analyses of observational studies. We argue that meta-analyses should only be performed within the framework of systematic reviews that have been prepared using methods that minimize bias and address the combinability of studies.
Resumo:
The newly released online statistics function of Spine Tango allows comparison of own data against the aggregated results of the data pool that all other participants generate. This comparison can be considered a very simple way of benchmarking, which means that the quality of what one organization does is compared with other similar organizations. The goal is to make changes towards better practice if benchmarking shows inferior results compared with the pool. There are, however, pitfalls in this simplified way of comparing data that can result in confounding. This means that important influential factors can make results appear better or worse than they are in reality and these factors can only be identified and neutralized in a multiple regression analysis performed by a statistical expert. Comparing input variables, confounding is less of a problem than comparing outcome variables. Therefore, the potentials and limitations of automated online comparisons need to be considered when interpreting the results of the benchmarking procedure.
Resumo:
OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Resumo:
The mechanical behavior of granular materials has been traditionally approached through two theoretical and computational frameworks: macromechanics and micromechanics. Macromechanics focuses on continuum based models. In consequence it is assumed that the matter in the granular material is homogeneous and continuously distributed over its volume so that the smallest element cut from the body possesses the same physical properties as the body. In particular, it has some equivalent mechanical properties, represented by complex and non-linear constitutive relationships. Engineering problems are usually solved using computational methods such as FEM or FDM. On the other hand, micromechanics is the analysis of heterogeneous materials on the level of their individual constituents. In granular materials, if the properties of particles are known, a micromechanical approach can lead to a predictive response of the whole heterogeneous material. Two classes of numerical techniques can be differentiated: computational micromechanics, which consists on applying continuum mechanics on each of the phases of a representative volume element and then solving numerically the equations, and atomistic methods (DEM), which consist on applying rigid body dynamics together with interaction potentials to the particles. Statistical mechanics approaches arise between micro and macromechanics. It tries to state which the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles and the interactions. The main objective of this paper is to introduce this approach.
Resumo:
In this study, we estimate the statistical significance of structure prediction by threading. We introduce a single parameter ɛ that serves as a universal measure determining the probability that the best alignment is indeed a native-like analog. Parameter ɛ takes into account both length and composition of the query sequence and the number of decoys in threading simulation. It can be computed directly from the query sequence and potential of interactions, eliminating the need for sequence reshuffling and realignment. Although our theoretical analysis is general, here we compare its predictions with the results of gapless threading. Finally we estimate the number of decoys from which the native structure can be found by existing potentials of interactions. We discuss how this analysis can be extended to determine the optimal gap penalties for any sequence-structure alignment (threading) method, thus optimizing it to maximum possible performance.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92C20
Resumo:
Within the classification of orbits in axisymmetric stellar systems, we present a new algorithm able to automatically classify the orbits according to their nature. The algorithm involves the application of the correlation integral method to the surface of section of the orbit; fitting the cumulative distribution function built with the consequents in the surface of section of the orbit, we can obtain the value of its logarithmic slope m which is directly related to the orbit’s nature: for slopes m ≈ 1 we expect the orbit to be regular, for slopes m ≈ 2 we expect it to be chaotic. With this method we have a fast and reliable way to classify orbits and, furthermore, we provide an analytical expression of the probability that an orbit is regular or chaotic given the logarithmic slope m of its correlation integral. Although this method works statistically well, the underlying algorithm can fail in some cases, misclassifying individual orbits under some peculiar circumstances. The performance of the algorithm benefits from a rich sampling of the traces of the SoS, which can be obtained with long numerical integration of orbits. Finally we note that the algorithm does not differentiate between the subtypes of regular orbits: resonantly trapped and untrapped orbits. Such distinction would be a useful feature, which we leave for future work. Since the result of the analysis is a probability linked to a Gaussian distribution, for the very definition of distribution, some orbits even if they have a certain nature are classified as belonging to the opposite class and create the probabilistic tails of the distribution. So while the method produces fair statistical results, it lacks in absolute classification precision.