946 resultados para src Homology Domains
Resumo:
SHP-1 is a Src homology 2 (SH2) domain-containing tyrosine phosphatase that plays an essential role in negative regulation of immune cell activity. We describe here a new model for regulation of SHP-1 involving phosphorylation of its C-terminal Ser(591) by associated protein kinase Calpha. In human platelets, SHP-1 was found to constitutively associate with its substrate Vav1 and, through its SH2 domains, with protein kinase Calpha. Upon activation of either PAR1 or PAR4 thrombin receptors, the association between the three proteins was retained, and Vav1 became phosphorylated on tyrosine and SHP-1 became phosphorylated on Ser(591). Phosphorylation of SHP-1 was mediated by protein kinase C and negatively regulated the activity of SHP-1 as demonstrated by a decrease in the in vitro ability of SHP-1 to dephosphorylate Vav1 on tyrosine. Protein kinase Calpha therefore critically and negatively regulates SHP-1 function, forming part of a mechanism to retain SHP-1 in a basal active state through interaction with its SH2 domains, and phosphorylating its C-terminal Ser(591) upon cellular activation leading to inhibition of SHP-1 activity and an increase in the tyrosine phosphorylation status of its substrates.
Resumo:
There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.
Resumo:
Stimulation of platelets by the extracellular matrix protein collagen leads to activation of a tyrosine kinase-dependent mechanism resulting in secretion and aggregation. Tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2 are early events in collagen-induced activation. We recently proposed that collagen-signaling in platelets involves a receptor or a receptor-associated protein containing an immunoreceptor tyrosine-based activation motif (ITAM) enabling interaction with Syk. In this report we show that collagen stimulation of platelets causes rapid tyrosine phosphorylation of the ITAM containing Fc receptor gamma-chain and that this is precipitated by the tandem Src homology 2 (SH2) domains of Syk expressed as a fusion protein. In addition we demonstrate an association between the Fc receptor gamma-chain with endogenous Syk in collagen-stimulated platelets. The Fc receptor gamma-chain undergoes tyrosine phosphorylation in platelets stimulated by a collagen-related peptide which does not bind the integrin alpha2beta1 and by the lectin wheat germ agglutinin. In contrast, cross-linking of the platelet low affinity receptor for immune complexes, FcgammaRIIA, or stimulation by thrombin does not induce phosphorylation of the Fc receptor gamma-chain. The present results provide a molecular basis for collagen activation of platelets which is independent of the integrin alpha2beta1 and involves phosphorylation of the Fc receptor gamma-chain, its association with Syk and subsequent phosphorylation of phospholipase Cgamma2. Collagen is the first example of a nonimmune receptor stimulus to signal through a pathway closely related to signaling by immune receptors.
Resumo:
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox_/_ coronary microvascular cells. Compared with wild-type p47phoxcDNAtransfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 . production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells.
Resumo:
Several G-protein coupled receptors, such as the β1-adrenergic receptor (β1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein–protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the β1-AR either as a glutathione S-transferase fusion protein in biochemical “pull-down” assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the β1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the β1-AR but not to that of the β2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of β1-ARs in HEK293 cells while having no effect on β2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in β1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Resumo:
Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.
Resumo:
Tyrosine phosphorylation of focal adhesion kinase (FAK) creates a high-affinity binding site for the src homology 2 domain of the Src family of tyrosine kinases. Assembly of a complex between FAK and Src kinases may serve to regulate the subcellular localization and the enzymatic activity of members of the Src family of kinases. We show that simultaneous overexpression of FAK and pp60c-src or p59fyn results in the enhancement of the tyrosine phosphorylation of a limited number of cellular substrates, including paxillin. Under these conditions, tyrosine phosphorylation of paxillin is largely cell adhesion dependent. FAK mutants defective for Src binding or focal adhesion targeting fail to cooperate with pp60c-src or p59fyn to induce paxillin phosphorylation, whereas catalytically defective FAK mutants can direct paxillin phosphorylation. The negative regulatory site of pp60c-src is hypophosphorylated when in complex with FAK, and coexpression with FAK leads to a redistribution of pp60c-src from a diffuse cellular location to focal adhesions. A FAK mutant defective for Src binding does not effectively induce the translocation of pp60c-src to focal adhesions. These results suggest that association with FAK can alter the localization of Src kinases and that FAK functions to direct phosphorylation of cellular substrates by recruitment of Src kinases.
Resumo:
Amphiphysin (Amph) is a src homology 3 domain-containing protein that has been implicated in synaptic vesicle endocytosis as a result of its interaction with dynamin. In a screen for novel members of the amphiphysin family, we identified Amph2, an isoform 49% identical to the previously characterized Amph1 protein. The subcellular distribution of this isoform parallels Amph1, both being enriched in nerve terminals. Like Amph1, a role in endocytosis at the nerve terminal is supported by the rapid dephosphorylation of Amph2 on depolarization. Importantly, the two isoforms can be coimmunoprecipitated from the brain as an equimolar complex, suggesting that the two isoforms act in concert. As determined by cross-linking of brain extracts, the Amph1–Amph2 complex is a 220- to 250-kDa heterodimer. COS cells transfected with either Amph1 or Amph2 show greatly reduced transferrin uptake, but coexpression of the two proteins rescues this defect, supporting a role for the heterodimer in clathrin-mediated endocytosis. Although the src homology 3 domains of both isoforms interact with dynamin, the heterodimer can associate with multiple dynamin molecules in vitro and activates dynamin’s GTPase activity. We propose that it is an amphiphysin heterodimer that drives the recruitment of dynamin to clathrin-coated pits in endocytosing nerve terminals.
Resumo:
Proteins such as the product of the breakpoint cluster region, chimaerin, and the Src homology 3-binding protein 3BP1, are GTPase activating proteins (GAPs) for members of the Rho subfamily of small GTP-binding proteins (G proteins or GTPases). A 200-residue region, named the breakpoint cluster region-homology (BH) domain, is responsible for the GAP activity. We describe here the crystal structure of the BH domain from the p85 subunit of phosphatidylinositol 3-kinase at 2.0 Å resolution. The domain is composed of seven helices, having a previously unobserved arrangement. A core of four helices contains most residues that are conserved in the BH family. Their packing suggests the location of a G-protein binding site. This structure of a GAP-like domain for small GTP-binding proteins provides a framework for analyzing the function of this class of molecules.
Resumo:
Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2) or phosphotyrosine interaction domains (PID). Additionally, several cytoplasmic proteins that may or may not associate with the receptor undergo tyrosine phosphorylation. To identify several components of the EGFR signaling pathway in a single step, we have immunoprecipitated molecules that are tyrosine phosphorylated in response to EGF and analyzed them by one-dimensional gel electrophoresis followed by mass spectrometry. Combining matrix-assisted laser desorption/ionization (MALDI) and nanoelectrospray tandem mass spectrometry (MS/MS) led to the identification of nine signaling molecules, seven of which had previously been implicated in EGFR signaling. Several of these molecules were identified from low femtomole levels of protein loaded onto the gel. We identified Vav-2, a recently discovered guanosine nucleotide exchange factor that is expressed ubiquitously, as a substrate of the EGFR. We demonstrate that Vav-2 is phosphorylated on tyrosine residues in response to EGF and associates with the EGFR in vivo. Binding of Vav-2 to the EGFR is mediated by the SH2 domain of Vav-2. In keeping with its ubiquitous expression, Vav-2 seems to be a general signaling molecule, since it also associates with the platelet-derived growth factor (PDGF) receptor and undergoes tyrosine phosphorylation in fibroblasts upon PDGF stimulation. The strategy suggested here can be used for routine identification of downstream components of cell surface receptors in mammalian cells.
Resumo:
Cas ligand with multiple Src homology (SH) 3 domains (CMS) is an ubiquitously expressed signal transduction molecule that interacts with the focal adhesion protein p130Cas. CMS contains three SH3 in its NH2 terminus and proline-rich sequences in its center region. The latter sequences mediate the binding to the SH3 domains of p130Cas, Src-family kinases, p85 subunit of phosphatidylinositol 3-kinase, and Grb2. The COOH-terminal region contains putative actin binding sites and a coiled-coil domain that mediates homodimerization of CMS. CMS is a cytoplasmic protein that colocalizes with F-actin and p130Cas to membrane ruffles and leading edges of cells. Ectopic expression of CMS in COS-7 cells resulted in alteration in arrangement of the actin cytoskeleton. We observed a diffuse distribution of actin in small dots and less actin fiber formation. Altogether, these features suggest that CMS functions as a scaffolding molecule with a specialized role in regulation of the actin cytoskeleton.
Resumo:
c-Jun N-terminal kinases (JNKs) are potently activated by a number of cellular stimuli. Small GTPases, in particular Rac, are responsible for initiating the activation of the JNK pathways. So far, the signals leading from extracellular stimuli to the activation of Rac have remained elusive. Recent studies have demonstrated that the Src homology 2 (SH2)- and Src homology 3 (SH3)-containing adaptor protein Crk is capable of activating JNK when ectopically expressed. We found here that transient expression of Crk induces JNK activation, and this activation was dependent on both the SH2- and SH3-domains of Crk. Expression of p130Cas (Cas), a major binding protein for the Crk SH2-domain, also induced JNK activation, which was blocked by the SH2-mutant of Crk. JNK activation by Cas and Crk was effectively blocked by a dominant-negative form of Rac, suggesting for a linear pathway from the Cas-Crk-complex to the Rac-JNK activation. Many of the stimuli that activate the Rac-JNK pathway enhance engagement of the Crk SH2-domain. JNK activation by these stimuli, such as epidermal growth factor, integrin ligand binding and v-Src, was efficiently blocked by dominant-negative mutants of Crk. A dominant-negative form of Cas in turn blocked the integrin-, but not epidermal growth factor - nor v-Src-mediated JNK activation. Together, these results demonstrate an important role for Crk in connecting multiple cellular stimuli to the Rac-JNK pathway, and a role for the Cas-Crk complex in integrin-mediated JNK activation.
Resumo:
Melanoma inhibitory activity (MIA) is a 12-kDa protein that is secreted from both chondrocytes and malignant melanoma cells. MIA has been reported to have effects on cell growth and adhesion, and it may play a role in melanoma metastasis and cartilage development. We report the 1.4-Å crystal structure of human MIA, which consists of an Src homology 3 (SH3)-like domain with N- and C-terminal extensions of about 20 aa each. The N- and C-terminal extensions add additional structural elements to the SH3 domain, forming a previously undescribed fold. MIA is a representative of a recently identified family of proteins and is the first structure of a secreted protein with an SH3 subdomain. The structure also suggests a likely protein interaction site and suggests that, unlike conventional SH3 domains, MIA does not recognize polyproline helices.
Resumo:
In the 7 years since dynamin was first isolated from bovine brain in search of novel microtubule-based motors, our understanding of this enzyme has expanded significantly. We now know that brain dynamin belongs to a family of large GTPases, which mediate vesicle trafficking. Furthermore, this enzymatic activity is markedly increased through association with microtubules, acidic phospholipids, and certain regulatory proteins that contain Src homology 3 (SH3) domains. From functional, genetic, and cellular manipulations, it is now generally accepted that dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. These observations have confirmed at least one function of dynamin that was predicted from seminal studies on a pleiotropic mutant, shibirets (shits) in Drosophila melanogaster. Of equal interest is the finding that there are multiple dynamin gene products, including two that are expressed in a tissue-specific manner, and they share marked homology with a larger family of distinct but related proteins. Therefore, it is attractive to speculate that the different dynamins may participate in related cellular functions, such as distinct endocytic processes and even secretion. In turn, dynamin could play an important role in cell growth, cell spreading, and neurite outgrowth. The purpose of this review is to enumerate on the expansive dynamin literature and to discuss the nomenclature, expression, and putative functions of this growing and interesting family of proteins.
Resumo:
We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.