993 resultados para spontaneously hypertensive rat (SHR)
Resumo:
During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.
Resumo:
We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press
Resumo:
The vagus nerve is an important component of the efferent arm of the baroreflex. Blood pressure levels as well as baroreflex control of circulation are significantly different in male and female spontaneously hypertensive rats (SHR). We proposed to investigate the morphometric differences between genders using the vagus nerve of SHR. Adult animals (20 weeks old) were anesthetized and had their arterial pressure (AP) and heart rate (HR) recorded by a computerized system. The rats were then systemically perfused with a fixative solution and had their cervical vagi nerves prepared for light microscopy. Proximal and distal segments of the left and right vagi nerves were evaluated for morphometric parameters including fascicle area and diameter, myelinated fiber number, density, area and diameter. Comparisons were made between sides and segments on the same gender as well as between genders. Differences were considered significant when p<0.05. Male SHR had significantly higher AP and HR. Morphometric data showed no differences between the same levels of both sides and between segments on the same side for male and female rats. In addition, no significant morphometric differences were observed when genders were compared. This is the first description of vagus nerve morphometry in SHR indicating that gender differences in AP and HR cannot be attributed to dissimilarities in vagal innervation of the heart. These data provide a morphological basis for further studies involving functional investigations of the efferent arm of the baroreflex in hypertension. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE - Evaluation of the performance of the QRS voltage-duration product (VDP) for detection of left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHR). METHODS - Orthogonal electrocardiograms (ECG) were recorded in male SHR at the age of 12 and 20 weeks, when systolic blood pressure (sBP) reached the average values of 165±3 mmHg and 195±12 mmHg, respectively. Age- and sex- matched normotensive Wistar Kyoto (WKY) rats were used as controls. VDP was calculated as a product of maximum QRS spatial vector magnitude and QRS duration. Left ventricular mass (LVM) was weighed after rats were sacrificed. RESULTS - LVM in SHR at 12 and 20 weeks of age (0.86±0.05 g and 1.05±0.07 g, respectively) was significantly higher as compared with that in WKY (0.65±0.07 g and 0.70±0.02 g). The increase in LVM closely correlated with the sBP increase. VDP did not reflect the increase in LVM in SHR. VDP was lower in SHR as compared with that in WKY, and the difference was significant at the age of 20 weeks (18.2mVms compared with 10.7mVms, p<0.01). On the contrary, a significant increase in the VDP was observed in the control WKY at the age of 20 weeks without changes in LVM. The changes in VDP were influenced mainly by the changes in QRSmax. CONCLUSION - LVM was not the major determinant of QRS voltage changes and consequently of the VDP. These data point to the importance of the nonspatial determinants of the recorded QRS voltage in terms of the solid angle theory.
Resumo:
The 5-HT2B/2C receptor antagonist SB 206553 exerts anxiolytic effects in rat models of anxiety. However, these effects have been reported for standard rat strains, thus raising the issue of SB 206553 effects in rat strains displaying different levels of anxiety. Herein, the effects of SB 206553 in a 5-min elevated plus-maze test of anxiety were compared to those of the reference anxiolytic, diazepam, in two rat strains respectively displaying high (Lewis rats) and low (spontaneously hypertensive rats, SHR) anxiety. Diazepam (0.37, 0.75, or 1.5 mg/kg; 30 min before testing) increased in a dose-dependent manner the behavioral measures in SHR, but not in Lewis rats. On the other hand, SB 206553 (1.25, 2.5, or 5 mg/kg; 30 min before testing) failed to alter the anxiety parameters in both strains, whereas it increased closed arm entries in Lewis rats, suggesting that it elicited hyperactivity in the latter strain. Accordingly, the hypolocomotor effect of the nonselective 5-HT2B/2C receptor agonist m-chlorophenylpiperazine (1.5 mg/kg ip 20 min before a 15-min exposure to an activity cage) was prevented by the 1.25 and 2.5 mg/kg doses of SB 206553 in Lewis rats and SHR, respectively. Compared with SHR, Lewis rats may display a lower response to benzodiazepine-mediated effects and a more efficient control of locomotor activity by 5-HT2B/2C receptors.
Resumo:
In addition to reducing blood pressure, hydralazine can reduce the production of inflammatory cytokines and reduce the expression of leukocyte adhesion molecules. Differences in leukocyte behavior and leukocyte adhesion molecule expression in spontaneously hypertensive rats (SHR) compared to normotensive rats have been reported. However, whether hydralazine can reduce leukocyte migration in vivo in hypertension and in normotension remains unknown. To address this question, male SHR and Wistar rats were treated for 15 days with hydralazine at a dose of similar to 3.5 mg/kg or similar to 14 mg/kg in their drinking water. The numbers of rollers and adherent and migrated cells were determined by direct vital microscopy, and blood pressure was assessed by tail plethysmography. In addition, following treatment with the higher dose, immunohistochemistry was used to measure the expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cells, while flow cytometry was used to evaluate the expression of leukocyte CD18 and L-selectin. Hydralazine reduced leukocyte adherence and migration in SHR either at the higher, that reduced blood pressure levels, or lower dose, which did not reduce it. Reduced ICAM-1 expression might be involved in the reduced migration observed in SHR. In Wistar rats, only at the higher dose hydralazine reduced blood pressure levels and leukocyte migration. Reduced P-selectin expression might be involved. We therefore conclude that hydralazine reduces leukocyte migration by different mechanisms in SHR and Wistar rats, specifically by reducing ICAM-1 expression in the former and P-selectin expression in the latter. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Several studies have shown alterations in hearts from animals subjected to food restriction (FR). However, few experiments in hearts evaluating pressure overload have been reported. We examined the effects of chronic FR on myocardial function and morphology in spontaneously hypertensive rats (SHR). Sixty-day-old SHR were fed a control (C) or a restricted diet (daily intake reduced to 50% of amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Food restriction decreased body weight and LV weight; LV weight/body-weight ratio was lower in the food-restricted group (SHR-C, 2.84 +/- 0.21 mg/g; SHR-FR, 2.56 +/- 0.24 mg/g; P <.05). Food restriction did not change arterial systolic blood pressure. Myocyte surface area was lower in the food-restricted group (P <.01). Food restriction induced myocardial ultrastructural alterations including reduced sarcoplasm content, reduced and disorganized myofilaments, disorganized Z line, dilated sarcoplasmic reticulum, and deep infoldings of plasma membrane. Myocardial hydroxyproline concentration was increased in the restricted rats. Peak developed tension (P <.05) and maximum rate of tension development (P <.01) were decreased in the SHR-FR group. In conclusion, myocardium of SHR subjected to chronic FR presents attenuation of hypertrophy development, ultrastructural changes, increased collagen content, and systolic dysfunction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The salivary activity in pups of spontaneously hypertensive rats (SHR) and Wistar (W) rats treated with atenolol during pregnancy, and lactation was evaluated. Atenolol's anti-hypertensive effect on the SHR rats was noticed from the beginning of treatment. Atenolol-treated SHR and Wistar rat pups showed a decrease in salivary gland weight, salivary flow, and protein concentration, with no alteration in salivary amylase activity. Atenolol's effect on salivary glands can interfere with oral health maintenance. Copyright © Informa Healthcare USA, Inc.
Resumo:
Background. The literature did not evidence yet with which age spontaneously hypertensive rats (SHR) start to present baroreflex reduction. We endeavored to evaluate the baroreflex function in eight-week-old SHR. Methods. Male Wistar Kyoto (WKY) normotensive rats and SHR aged eight weeks were studied. Baroreflex was calculated as the variation of heart rate (HR) divided by the mean arterial pressure (MAP) variation (HR/MAP) tested with a depressor dose of sodium nitroprusside (SNP, 50 g/kg) and with a pressor dose of phenylephrine (PHE, 8 g/kg) in the right femoral venous approach through an inserted cannula in the animals. Significant differences for p < 0.05. Results. Baseline MAP (p < 0.0001) and HR (p = 0.0028) was higher in SHR. Bradycardic peak was attenuated in SHR (p < 0.0001), baroreflex gain tested with PHE was also reduced in the SHR group (p = 0.0012). PHE-induced increase in MAP was increased in WKY compared to SHR (p = 0.039). Bradycardic reflex responses to intravenous PHE was decreased in SHR (p < 0.0001). Conclusion. Eight weeks old SHR already presents impairment of the parasympathetic component of baroreflex. © 2010 Cisternas et al; licensee BioMed Central Ltd.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Background: Although skeletal muscle atrophy and changes in myosin heavy chain (MyHC) isoforms have often been observed during heart failure, their pathophysiological mechanisms are not completely defined. In this study we tested the hypothesis that skeletal muscle phenotype changes are related to myogenic regulatory factors and myostatin/follistatin expression in spontaneously hypertensive rats (SHR) with heart failure. Methods: After developing tachypnea, SHR were subjected to transthoracic echocardiogram. Pathological evidence of heart failure was assessed during euthanasia. Age-matched Wistar-Kyoto (WKY) rats were used as controls. Soleus muscle morphometry was analyzed in histological sections, and MyHC isoforms evaluated by electrophoresis. Protein levels were assessed by Western blotting. Statistical analysis: Student's t test and Pearson correlation. Results: All SHR presented right ventricular hypertrophy and seven had pleuropericardial effusion. Echocardiographic evaluation showed dilation in the left chambers and left ventricular hypertrophy with systolic and diastolic dysfunction in SHR. Soleus weight and fiber cross sectional areas were lower (WKY 3615±412; SHR 2035±224 μm2; P < 0.001), and collagen fractional volume was higher in SHR. The relative amount of type I MyHC isoform was increased in SHR. Myogenin, myostatin, and follistatin expression was lower and MRF4 levels higher in SHR. Myogenin and follistatin expression positively correlated with fiber cross sectional areas and MRF4 levels positively correlated with I MyHC isoform. Conclusion: Reduced myogenin and follistatin expression seems to participate in muscle atrophy while increased MRF4 protein levels can modulate myosin heavy chain isoform shift in skeletal muscle of spontaneously hypertensive rats with heart failure. © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.