143 resultados para splines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho foi efectuado um estudo teórico de todas as transições de emissão espontânea a dois fotões dos estados iniciais n = 2, 3 em iões hidrogenoides. Foram obtidos valores precisos para a taxa de emissão através da resolução da equação de Dirac e da utilização de uma base de B-splines para valores da carga nuclear Z até 92. Foram também calculadas as taxas de transição a dois fotões para os estados 21S e 23S0 em iões heliumoides na aproximação que os electrões não interactuam entre si. Os resultados obtidos estão de acordo com o esperado. Este trabalho é a continuação de um trabalho anterior na qual foi efectuado um estudo da transição a dois fotões 2s → 1s em sistemas hidrogenoides usando uma base de B-splines [1] e uma dedução de uma expressão teórica para a taxa de emissão a dois fotões em sistemas heliumoides [2].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: (i) To investigate whether pulsatility index (PI) and mean flow velocities (MFV) are altered in glaucoma patients. (ii) To evaluate the significance of PI in retrobulbar autoregulation capacity. METHODS: Patients with primary open-angle glaucoma (POAG; n = 49), normal tension glaucoma (NTG; n = 62) and healthy controls (n = 48) underwent colour Doppler imaging measurements of the retrobulbar vasculature. Kruskal-Wallis test was used to compare variables between the three diagnostic groups. Restricted cubic splines were used to determine nonlinearities between the resistive index (RI) and PI correlations. RESULTS: Mean flow velocities (MFV) were lower in both short posterior ciliary arteries (SCPA) and central retinal arteries (CRA) from the two glaucoma groups (p < 0.04 versus healthy controls). No differences were detected in RI or PI in any arteries of the three diagnostic groups (p > 0.08). In healthy individuals, correlations between RI and PI were linear in all arteries. In both POAG and NTG patients, CRA presented a nonlinear curve with a cutpoint at RI 0.77 (p < 0.001) and 0.61 (p = 0.03), respectively, above which the slope increased nearly five- and tenfold (POAG: 1.96 to 10.06; NTG: -0.46-4.06), respectively. A nonlinear correlation in the ophthalmic artery was only observed in NTG patients, with a cutpoint at RI 0.82 (p < 0.001), above which the slope increased from 3.47 to 14.03. CONCLUSIONS: Glaucoma patients do not present the linear relationships between RI and PI observed in healthy individuals. Their nonlinear relations may be indicative of an altered autoregulation and suggest a possible threshold RI could be determined above which autoregulatory disturbances become more relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comparative analysis of continuous signals restoration by different kinds of approximation is performed. The software product, allowing to define optimal method of different original signals restoration by Lagrange polynomial, Kotelnikov interpolation series, linear and cubic splines, Haar wavelet and Kotelnikov-Shannon wavelet based on criterion of minimum value of mean-square deviation is proposed. Practical recommendations on the selection of approximation function for different class of signals are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation. The study of human brain development in itsearly stage is today possible thanks to in vivo fetalmagnetic resonance imaging (MRI) techniques. Aquantitative analysis of fetal cortical surfacerepresents a new approach which can be used as a markerof the cerebral maturation (as gyration) and also forstudying central nervous system pathologies [1]. However,this quantitative approach is a major challenge forseveral reasons. First, movement of the fetus inside theamniotic cavity requires very fast MRI sequences tominimize motion artifacts, resulting in a poor spatialresolution and/or lower SNR. Second, due to the ongoingmyelination and cortical maturation, the appearance ofthe developing brain differs very much from thehomogenous tissue types found in adults. Third, due tolow resolution, fetal MR images considerably suffer ofpartial volume (PV) effect, sometimes in large areas.Today extensive efforts are made to deal with thereconstruction of high resolution 3D fetal volumes[2,3,4] to cope with intra-volume motion and low SNR.However, few studies exist related to the automatedsegmentation of MR fetal imaging. [5] and [6] work on thesegmentation of specific areas of the fetal brain such asposterior fossa, brainstem or germinal matrix. Firstattempt for automated brain tissue segmentation has beenpresented in [7] and in our previous work [8]. Bothmethods apply the Expectation-Maximization Markov RandomField (EM-MRF) framework but contrary to [7] we do notneed from any anatomical atlas prior. Data set &Methods. Prenatal MR imaging was performed with a 1-Tsystem (GE Medical Systems, Milwaukee) using single shotfast spin echo (ssFSE) sequences (TR 7000 ms, TE 180 ms,FOV 40 x 40 cm, slice thickness 5.4mm, in plane spatialresolution 1.09mm). Each fetus has 6 axial volumes(around 15 slices per volume), each of them acquired inabout 1 min. Each volume is shifted by 1 mm with respectto the previous one. Gestational age (GA) ranges from 29to 32 weeks. Mother is under sedation. Each volume ismanually segmented to extract fetal brain fromsurrounding maternal tissues. Then, in-homogeneityintensity correction is performed using [9] and linearintensity normalization is performed to have intensityvalues that range from 0 to 255. Note that due tointra-tissue variability of developing brain someintensity variability still remains. For each fetus, ahigh spatial resolution image of isotropic voxel size of1.09 mm is created applying [2] and using B-splines forthe scattered data interpolation [10] (see Fig. 1). Then,basal ganglia (BS) segmentation is performed on thissuper reconstructed volume. Active contour framework witha Level Set (LS) implementation is used. Our LS follows aslightly different formulation from well-known Chan-Vese[11] formulation. In our case, the LS evolves forcing themean of the inside of the curve to be the mean intensityof basal ganglia. Moreover, we add local spatial priorthrough a probabilistic map created by fitting anellipsoid onto the basal ganglia region. Some userinteraction is needed to set the mean intensity of BG(green dots in Fig. 2) and the initial fitting points forthe probabilistic prior map (blue points in Fig. 2). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed as described in [8]. Results.The case study presented here has 29 weeks of GA. Thehigh resolution reconstructed volume is presented in Fig.1. The steps of BG segmentation are shown in Fig. 2.Overlap in comparison with manual segmentation isquantified by the Dice similarity index (DSI) equal to0.829 (values above 0.7 are considered a very goodagreement). Such BG segmentation has been applied on 3other subjects ranging for 29 to 32 GA and the DSI hasbeen of 0.856, 0.794 and 0.785. Our segmentation of theinner (red and blue contours) and outer cortical surface(green contour) is presented in Fig. 3. Finally, torefine the results we include our WM segmentation in theFreesurfer software [12] and some manual corrections toobtain Fig.4. Discussion. Precise cortical surfaceextraction of fetal brain is needed for quantitativestudies of early human brain development. Our workcombines the well known statistical classificationframework with the active contour segmentation forcentral gray mater extraction. A main advantage of thepresented procedure for fetal brain surface extraction isthat we do not include any spatial prior coming fromanatomical atlases. The results presented here arepreliminary but promising. Our efforts are now in testingsuch approach on a wider range of gestational ages thatwe will include in the final version of this work andstudying as well its generalization to different scannersand different type of MRI sequences. References. [1]Guibaud, Prenatal Diagnosis 29(4) (2009). [2] Rousseau,Acad. Rad. 13(9), 2006, [3] Jiang, IEEE TMI 2007. [4]Warfield IADB, MICCAI 2009. [5] Claude, IEEE Trans. Bio.Eng. 51(4) (2004). [6] Habas, MICCAI (Pt. 1) 2008. [7]Bertelsen, ISMRM 2009 [8] Bach Cuadra, IADB, MICCAI 2009.[9] Styner, IEEE TMI 19(39 (2000). [10] Lee, IEEE Trans.Visual. And Comp. Graph. 3(3), 1997, [11] Chan, IEEETrans. Img. Proc, 10(2), 2001 [12] Freesurfer,http://surfer.nmr.mgh.harvard.edu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Mental and body weight disorders are among the major global health challenges, and their comorbidity may play an important role in treatment and prevention of both pathologies. A growing number of studies have examined the relationship between psychiatric status and body weight, but our knowledge is still limited. OBJECTIVE The present study aims to investigate the cross-sectional relationships of psychiatric status and body mass index (BMI) in Málaga, a Mediterranean city in the South of Spain. MATERIALS AND METHODS A total of 563 participants were recruited from those who came to his primary care physician, using a systematic random sampling, non-proportional stratified by BMI categories. Structured clinical interviews were used to assess current Axes-I and II mental disorders according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). BMI was calculated as weight (Kg) divided by square of height in meters (m2). Logistic regression was used to investigate the association between BMI and the presence of any mental disorder. BMI was introduced in the models using restricted cubic splines. RESULTS We found that high BMI values were directly associated with mood and adjustment disorders, and low BMI values were directly associated with avoidant and dependent personality disorders (PDs). We observed an inverse relationship between low BMI values and cluster A PDs. There were not significant relationships between anxiety or substance-related disorders and BMI. CONCLUSION Psychiatric status and BMI are related in a Mediterranean Spanish population. A multidisciplinary approach to both pathologies becomes increasingly more necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To examine trends in the prevalence of congenital heart defects (CHDs) in Europe and to compare these trends with the recent decrease in the prevalence of CHDs in Canada (Quebec) that was attributed to the policy of mandatory folic acid fortification. STUDY DESIGN: We used data for the period 1990-2007 for 47 508 cases of CHD not associated with a chromosomal anomaly from 29 population-based European Surveillance of Congenital Anomalies registries in 16 countries covering 7.3 million births. We estimated trends for all CHDs combined and separately for 3 severity groups using random-effects Poisson regression models with splines. RESULTS: We found that the total prevalence of CHDs increased during the 1990s and the early 2000s until 2004 and decreased thereafter. We found essentially no trend in total prevalence of the most severe group (group I), whereas the prevalence of severity group II increased until about 2000 and decreased thereafter. Trends for severity group III (the most prevalent group) paralleled those for all CHDs combined. CONCLUSIONS: The prevalence of CHDs decreased in recent years in Europe in the absence of a policy for mandatory folic acid fortification. One possible explanation for this decrease may be an as-yet-undocumented increase in folic acid intake of women in Europe following recommendations for folic acid supplementation and/or voluntary fortification. However, alternative hypotheses, including reductions in risk factors of CHDs (eg, maternal smoking) and improved management of maternal chronic health conditions (eg, diabetes), must also be considered for explaining the observed decrease in the prevalence of CHDs in Europe or elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo fetal magnetic resonance imaging provides aunique approach for the study of early human braindevelopment [1]. In utero cerebral morphometry couldpotentially be used as a marker of the cerebralmaturation and help to distinguish between normal andabnormal development in ambiguous situations. However,this quantitative approach is a major challenge becauseof the movement of the fetus inside the amniotic cavity,the poor spatial resolution provided by very fast MRIsequences and the partial volume effect. Extensiveefforts are made to deal with the reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution [2,3,4]. Frameworkswere developed for the segmentation of specific regionsof the fetal brain such as posterior fossa, brainstem orgerminal matrix [5,6], or for the entire brain tissue[7,8], applying the Expectation-Maximization MarkovRandom Field (EM-MRF) framework. However, many of theseprevious works focused on the young fetus (i.e. before 24weeks) and use anatomical atlas priors to segment thedifferent tissue or regions. As most of the gyraldevelopment takes place after the 24th week, acomprehensive and clinically meaningful study of thefetal brain should not dismiss the third trimester ofgestation. To cope with the rapidly changing appearanceof the developing brain, some authors proposed a dynamicatlas [8]. To our opinion, this approach however faces arisk of circularity: each brain will be analyzed /deformed using the template of its biological age,potentially biasing the effective developmental delay.Here, we expand our previous work [9] to proposepost-processing pipeline without prior that allow acomprehensive set of morphometric measurement devoted toclinical application. Data set & Methods: Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences (TR 7000 ms, TE 180 ms, FOV 40 x 40 cm,slice thickness 5.4mm, in plane spatial resolution1.09mm). For each fetus, 6 axial volumes shifted by 1 mmwere acquired under motherâeuro?s sedation (about 1min pervolume). First, each volume is segmentedsemi-automatically using region-growing algorithms toextract fetal brain from surrounding maternal tissues.Inhomogeneity intensity correction [10] and linearintensity normalization are then performed. Brain tissues(CSF, GM and WM) are then segmented based on thelow-resolution volumes as presented in [9]. Ahigh-resolution image with isotropic voxel size of 1.09mm is created as proposed in [2] and using B-splines forthe scattered data interpolation [11]. Basal gangliasegmentation is performed using a levet setimplementation on the high-resolution volume [12]. Theresulting white matter image is then binarized and givenas an input in FreeSurfer software(http://surfer.nmr.mgh.harvard.edu) to providetopologically accurate three-dimensional reconstructionsof the fetal brain according to the local intensitygradient. References: [1] Guibaud, Prenatal Diagnosis29(4) (2009). [2] Rousseau, Acad. Rad. 13(9), 2006. [3]Jiang, IEEE TMI 2007. [4] Warfield IADB, MICCAI 2009. [5]Claude, IEEE Trans. Bio. Eng. 51(4) 2004. [6] Habas,MICCAI 2008. [7] Bertelsen, ISMRM 2009. [8] Habas,Neuroimage 53(2) 2010. [9] Bach Cuadra, IADB, MICCAI2009. [10] Styner, IEEE TMI 19(39 (2000). [11] Lee, IEEETrans. Visual. And Comp. Graph. 3(3), 1997. [12] BachCuadra, ISMRM 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation is a useful tool in cardiac SPECT to assess quantification algorithms. However, simple equation-based models are limited in their ability to simulate realistic heart motion and perfusion. We present a numerical dynamic model of the left ventricle, which allows us to simulate normal and anomalous cardiac cycles, as well as perfusion defects. Bicubic splines were fitted to a number of control points to represent endocardial and epicardial surfaces of the left ventricle. A transformation from each point on the surface to a template of activity was made to represent the myocardial perfusion. Geometry-based and patient-based simulations were performed to illustrate this model. Geometry-based simulations modeled ~1! a normal patient, ~2! a well-perfused patient with abnormal regional function, ~3! an ischaemic patient with abnormal regional function, and ~4! a patient study including tracer kinetics. Patient-based simulation consisted of a left ventricle including a realistic shape and motion obtained from a magnetic resonance study. We conclude that this model has the potential to study the influence of several physical parameters and the left ventricle contraction in myocardial perfusion SPECT and gated-SPECT studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia.