976 resultados para spherical aberration


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用一种特殊的二次光栅用于激光波前测量, 它对非零级衍射光束具有不同的聚焦效应, 其光栅线为圆弧型而非直线。导出了在会聚光束情况下的两平面成像在单一像平面上的距离关系, 实验上实现了二次光栅用于会聚光束的波前测量, 测量得到会聚光束具有较大的散焦(-2.93λ)和球差(1.34λ), 与该透镜引起波前的离焦像差理论理想值(-2.695λ)基本符合。该技术可以实现波前的高空间分辨力和高精度实时测量, 大大减少光学元件数量, 降低装置成本。由于大功率激光束的不稳定性, 其波前变化非常快, 所以该方法的实时性非

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To assess corneal wavefront-guided photorefractive keratectomy (PRK) to correct hyperopia after radial keratotomy (RK). SETTING: Sadalla Amin Ghanem Eye Hospital, Joinville, Santa Catarina, Brazil. DESIGN: Case series. METHODS: Excimer laser corneal wavefront-guided PRK with intraoperative mitomycin-C (MMC) 0.02% was performed. Main outcome measures were uncorrected (UDVA) and corrected (CDVA) distance visual acuities, spherical equivalent (SE), corneal aberrations, and haze. RESULTS: The mean time between RK and PRK in the 61 eyes (39 patients) was 18.8 years +/- 3.8 (SD). Before PRK, the mean SE was +4.17 +/- 1.97 diopters (D); the mean astigmatism, -1.39 +/- 1.04 D; and the mean CDVA, 0.161 +/- 0.137 logMAR. At 24 months, the mean values were 0.14 +/- 0.99 D (P<.001), -1.19 +/- 1.02 D (P=.627), and 0.072 +/- 0.094 logMAR (P<.001), respectively; the mean UDVA was 0.265 +/- 0.196 (P<.001). The UDVA was 20/25 or better in 37.7% of eyes and 20/40 or better in 68.9%. The CDVA improved by 1 or more lines in 62.3% of eyes. Two eyes (3.3%) lost 2 or more lines, 1 due to corneal ectasia. Thirty eyes (49.2%) were within +/- 0.50 D of intended SE and 45 (73.8%) were within +/- 1.00 D. From 6 to 24 months, the mean SE regression was +0.39 D (P<.05). A significant decrease in coma, trefoil, and spherical aberration occurred. Three eyes developed peripheral haze more than grade 1. CONCLUSION: Corneal wavefront-guided PRK with MMC for hyperopia after RK significantly improved UDVA, CDVA, and higher-order corneal aberrations with a low incidence of visually significant corneal haze.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A computational study of line-focus generation was done using a self-written ray-tracing code and compared to experimental data. Two line-focusing geometries were compared, i.e., either exploiting the sagittal astigmatism of a tilted spherical mirror or using the spherical aberration of an off-axis- illuminated spherical mirror. Line focusing by means of astigmatism or spherical aberration showed identical results as expected for the equivalence of the two frames of reference. The variation of the incidence angle on the target affects the line-focus length, which affects the amplification length such that as long as the irradiance is above the amplification threshold, it is advantageous to have a longer line focus. The amplification threshold is physically dependent on operating parameters and plasma-column conditions and in the present study addresses four possible cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aplanatic designs present great interest in the optics field since they are free from spherical aberration and linear coma at the axial direction. Nevertheless nowadays it cannot be found on literature any thin aplanatic design based on a lens. This work presents the first aplanatic thin lens (in this case a dome-shaped faceted TIR lens performing light collimation), designed for LED illumination applications. This device, due to its TIR structure (defined as an anomalous microstructure as we will see) presents good color-mixing properties. We will show this by means of raytrace simulations, as well as high optical efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose To evaluate visual, optical, and quality of life (QoL) outcomes and intercorrelations after bilateral implantation of posterior chamber phakic intraocular lenses. Methods Twenty eyes with high to moderate myopia of 10 patients that underwent PRL implantation (Phakic Refractive Lens, Carl Zeiss Meditec AG) were examined. Refraction, visual acuity, photopic and low mesopic contrast sensitivity (CS) with and without glare, ocular aberrations, as well as QoL outcomes (National Eye Institute Refractive Error Quality of Life Instrument-42, NEI RQL-42) were evaluated at 12 months postoperatively. Results Significant improvement in uncorrected (UDVA) and best-corrected distance (CDVA) visual acuities were found postoperatively (p < 0.01), with significant reduction in spherical equivalent (p < 0.01). Low mesopic CS without glare was significantly better than measurements with glare for 1.5, 3, and 6 cycles/degree (p < 0.01). No significant correlations between higher order root mean square (RMS) with CDVA (r = −0.26, p = 0.27) and CS (r ≤ 0.45, p ≥ 0.05) were found. Postoperative binocular photopic CS for 12 cycles/degree and 18 cycles/degree correlated significantly with several RQL-42 scales. Glare index correlated significantly with CS measures and scotopic pupil size (r = −0.551, p = 0.04), but not with higher order RMS (r = −0.02, p = 0.94). Postoperative higher order RMS, postoperative primary coma and postoperative spherical aberration was significant higher for 5-mm pupil diameter (p < 0.01) compared with controls. Conclusions Correction of moderate to high myopia by means of PRL implantation had a positive impact on CS and QoL. The aberrometric increase induced by the surgery does not seem to limit CS and QoL. However, perception of glare is still a relevant disturbance in some cases possibly related to the limitation of the optical zone of the PRL.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background To evaluate and report the visual, refractive, and aberrometric outcomes of LASIK for the correction of low to moderate hyperopia in a pilot group using a commercially available solid-state laser. Methods Prospective pilot study including 11 consecutive eyes with low to moderate hyperopia of six patients undergoing LASIK surgery using the Pulzar Z1 solid-state laser (CustomVis Laser Pty Ltd., currently CV Laser). Visual, refractive, and aberrometric changes were evaluated. Potential complications were evaluated as well. Mean follow-up time was 6.6 months (range, 3 to 11 months). Results A significant improvement in LogMAR uncorrected distance visual acuity (UDVA) was observed postoperatively (p = 0.01). No significant change was detected in LogMAR corrected distance visual acuity (CDVA) (p = 0.21). Postoperative LogMAR UDVA was 0.1 (about 20/25) or better in ten eyes (90.9 %). Mean overall efficacy and safety indices were 1.03 and 1.12. Postoperatively, no losses of lines of CDVA were observed. Postoperative spherical equivalent was within ±1.00 D in ten eyes (90.9 %). With regard to aberrations, no statistically significant changes were found in higher order and primary coma RMS postoperatively (p ≥ 0.21), and only minimal but statistically significant negativization of primary spherical aberration (p = 0.02) was observed. No severe complications were observed. Conclusion LASIK surgery using the solid-state laser technology seems to be a useful procedure for the correction of low to moderate hyperopia, with minimal induction of higher order aberrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the visual, refractive, contrast-sensitivity, and aberrometric outcomes during a 1-year follow-up after implantation of a trifocal intraocular lens (IOL). Setting: Premium Clinic, Teplice, Czech Republic. Design: Prospective case series. Methods: This study included eyes of patients having cataract surgery with implantation of the trifocal IOL model AT Lisa tri 839MP. Distance, intermediate (66 and 80 cm), and near (33 and 40 cm) vision; contrast sensitivity; aberrometric outcomes; and the defocus curve were evaluated during a 12-month follow-up. The level of posterior capsule opacification (PCO) was also evaluated. Results: In 120 eyes (60 patients), 1 month postoperatively, an improvement was observed in all visual parameters (P ≤ .03) except corrected near and intermediate visual acuities (both P ≥ .05). From 1 month to 12 months postoperatively, small but statistically significant changes were observed in uncorrected and corrected distance and near visual acuities (all P ≤ .03) and in uncorrected intermediate visual acuity (P = .01). In the defocus curve, no significant differences were found between visual acuities corresponding to defocus levels of −1.0 diopter (D) and −2.0 D (P = .22). The level of ocular spherical aberration decreased statistically significantly at 6 months (P < .001). Ocular and internal higher-order aberrations increased minimally but significantly from 6 to 12 months postoperatively (P < .001). The mean 12-month PCO score was 0.32 ± 0.44 (SD). Four eyes (3.3%) required neodymium:YAG capsulotomy. Conclusion: The trifocal IOL provided complete and stable visual restoration after cataract surgery during a 12-month follow-up, with good levels of visual quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of instrument realignment and angular misalignment during the clinical determination of wavefront aberrations by simulation in model eyes. Setting: Aston Academy of Life Sciences, Aston University, Birmingham, United Kingdom. Methods: Six model eyes were examined with wavefront-aberration-supported cornea ablation (WASCA) (Carl Zeiss Meditec) in 4 sessions of 10 measurements each: sessions 1 and 2, consecutive repeated measures without realignment; session 3, realignment of the instrument between readings; session 4, measurements without realignment but with the model eye shifted 6 degrees angularly. Intersession repeatability and the effects of realignment and misalignment were obtained by comparing the measurements in the various sessions for coma, spherical aberration, and higher-order aberrations (HOAs). Results: The mean differences between the 2 sessions without realignment of the instrument were 0.020 μm ± 0.076 (SD) for Z3 - 1(P = .551), 0.009 ± 0.139 μm for Z3 1(P = .877), 0.004 ± 0.037 μm for Z4 0 (P = .820), and 0.005 ± 0.01 μm for HO root mean square (RMS) (P = .301). Differences between the nonrealigned and realigned instruments were -0.017 ± 0.026 μm for Z3 - 1(P = .159), 0.009 ± 0.028 μm for Z3 1 (P = .475), 0.007 ± 0.014 μm for Z4 0(P = .296), and 0.002 ± 0.007 μm for HO RMS (P = 0.529; differences between centered and misaligned instruments were -0.355 ± 0.149 μm for Z3 - 1 (P = .002), 0.007 ± 0.034 μm for Z3 1(P = .620), -0.005 ± 0.081 μm for Z4 0(P = .885), and 0.012 ± 0.020 μm for HO RMS (P = .195). Realignment increased the standard deviation by a factor of 3 compared with the first session without realignment. Conclusions: Repeatability of the WASCA was excellent in all situations tested. Realignment substantially increased the variance of the measurements. Angular misalignment can result in significant errors, particularly in the determination of coma. These findings are important when assessing highly aberrated eyes during follow-up or before surgery. © 2007 ASCRS and ESCRS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE:To investigate the mechanism of action of the Tetraflex (Lenstec Kellen KH-3500) accommodative intraocular lens (IOL). METHODS:Thirteen eyes of eight patients implanted with the Tetraflex accommodating IOL for at least 2 years underwent assessment of their objective amplitude-of-accommodation by autorefraction, anterior chamber depth and pupil size with optical coherence tomography, and IOL flexure with aberrometry, each viewing a target at 0.0 to 4.00 diopters of accommodative demand. RESULTS:Pupil size decreased by 0.62+/-0.41 mm on increasing accommodative demand, but the Tetraflex IOL was relatively fixed in position within the eye. The ocular aberrations of the eye changed with increased accommodative demand, but not in a consistent manner among individuals. Those aberrations that appeared to be most affected were defocus, vertical primary and secondary astigmatism, vertical coma, horizontal and vertical primary and secondary trefoil, and spherical aberration. CONCLUSIONS:Some of the reported near vision benefits of the Tetraflex accommodating IOL appear to be due to changes in the optical aberrations because of the flexure of the IOL on accommodative effort rather than forward movement within the capsular bag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last few years, there has been considerable interest in using saturated magnetic objective lenses in high resolution electron microscopes. Such lenses, in present commercial electron microscopes, are energized either by conventional or superconducting coils. Very little work, however, has been reported on the use of conventional coils in saturated magnetic electron lenses. The present investigation has been concerned with the design of high flux density saturated objective lenses of both single and double polepiece types which may be energized by conventional coils and in some cases by superconducting coils. Such coils have the advantage of being small and capable of carrying high current densities. The present work has been carried out with the aid of several computer programs based on the finite element method. The effect of the shape and position of the energizing coil on the electron optical parameter has been investigated. Electron optical properties such as chromatic and spherical aberration have been studies in detail for saturated single and double polepiece lenses. Several high flux density coils of different shapes have been investigated. The choice of the most favourable coil shape and position subject to the operational requirements, has been studied in some detail. The focal properties of such optimised lenses have been computed and compared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous research has indicated that schematic eyes incorporating aspheric surfaces but lacking gradient index are unable to model ocular spherical aberration and peripheral astigmatism simultaneously. This limits their use as wide-angle schematic eyes. This thesis challenges this assumption by investigating the flexibility of schematic eyes comprising aspheric optical surfaces and homogeneous optical media. The full variation of ocular component dimensions found in human eyes was established from the literature. Schematic eye parameter variants were limited to these dimensions. The levels of spherical aberration and peripheral astigmatism modelled by these schematic eyes were compared to the range of measured levels. These were also established from the literature. To simplify comparison of modelled and measured data, single value parameters were introduced; the spherical aberration function (SAF), and peripheral astigmatism function (PAF). Some ocular components variations produced a wide range of aberrations without exceeding the limits of human ocular components. The effect of ocular component variations on coma was also investigated, but no comparison could be made as no empirical data exists. It was demonstrated that by combined manipulation of a number of parameters in the schematic eyes it was possible to model all levels of ocular spherical aberration and peripheral astigmatism. However, the unique parameters of a human eye could not be obtained in this way, as a number of models could be used to produce the same spherical aberration and peripheral astigmatism, while giving very different coma levels. It was concluded that these schematic eyes are flexible enough to model the monochromatic aberrations tested, the absence of gradient index being compensated for by altering the asphericity of one or more surfaces.