993 resultados para sperm membrane
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sperm cells need hexoses as a substrate for their function, for both the maintenance of membrane homeostasis and the movement of the tail. These cells have a peculiar metabolism that has not yet been fully understood, but it is clear that they obtain energy from hexoses through glycolisis and/or oxidative phosphorylation. Spermatozoa are in contact with different external environments, beginning from the testicular and epididymal fluid, passing to the seminal plasma and finally to the female genital tract fluids; in addition, with the spread of reproductive biotechnologies, sperm cells are diluted and stored in various media, containing different energetic substrates. To utilize these energetic sources, sperm cells, as other eukaryotic cells, have a well-constructed protein system, that is mainly represented by the GLUT family proteins. These transporters have a membrane-spanning α-helix structure and work as an enzymatic pump that permit a fast gradient dependent passage of sugar molecules through the lipidic bilayer of sperm membrane. Many GLUTs have been studied in man, bull and rat spermatozoa; the presence of some GLUTs has been also demonstrated in boar and dog spermatozoa. The aims of the present study were - to determine the presence of GLUTs 1, 2, 3, 4 and 5 in boar, horse, dog and donkey spermatozoa and to describe their localization; - to study eventual changes in GLUTs location after capacitation and acrosome reaction in boar, stallion and dog spermatozoa; - to determine possible changes in GLUTs localization after capacitation induced by insulin and IGF stimulation in boar spermatozoa; - to evaluate changes in GLUTs localization after flow-cytometric sex sorting in boar sperm cells. GLUTs 1, 2, 3 and 5 presence and localization have been demonstrated in boar, stallion, dog and donkey spermatozoa by western blotting and immunofluorescence analysis; a relocation in GLUTs after capacitation has been observed only in dog sperm cells, while no changes have been observed in the other species examined. As for boar, the stimulation of the capacitation with insulin and IGF didn’t cause any change in GLUTs localization, as well as for the flow cytometric sorting procedure. In conclusion, this study confirms the presence of GLUTs 1, 2 ,3 and 5 in boar, dog, stallion and donkey spermatozoa, while GLUT 4 seems to be absent, as a confirmation of other studies. Only in dog sperm cells capacitating conditions induce a change in GLUTs distribution, even if the physiological role of these changes should be deepened.
Resumo:
During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile.
Resumo:
In order for mammalian fertilization to transpire, spermatozoa must transit through the female reproductive tract and penetrate the outer investments of the oocyte: the cumulus oophorus and the zona pellucida. In order to penetrate the oocyte, spermatozoa must undergo the acrosome reaction. The acrosome reaction results in the exposure of the inner acrosomal membrane (IAM) and proteins that coat it to the extracellular environment. After the acrosome reaction, the IAM becomes the leading edge of spermatozoa undergoing progressive movement. Thus the enzymes which effect lysis of the oocyte investments ought to be located on the IAM. An objective of this study was to identify and characterize enzymatic activity detected on the IAM and provide evidence that they play a role in fertilization. This study also describes procedures for fractionating spermatozoa and isolating the IAM and proteins on its intra- and extra-vesicular surfaces, and describes their development during male gametogenesis. Since the IAM is exposed to the extracellular environment and oviductal milieu after the acrosome reaction, this study also sought to characterize interactions and relationships between factors in the oviductal environment and the enzymes identified on the IAM. The data presented provide evidence that MMP2 and acrosin are co-localized on the IAM, originate from the Golgi apparatus in gametogenesis, and suggest they cooperate in their function. Their localization and results of in vitro fertilization suggests they have a function in zona pellucida penetration. The data also provide evidence that plasminogen, originating from the oviductal epithelium and/or cumulus-oocyte complex, is present in the immediate environment of sperm-egg initial contact and penetration. Additionally, plasminogen interacts with MMP2 and enhances its enzymatic action on the IAM. The data also provide evidence that MMP2 has an important function in penetration of the cumulus oophorus. Holistically, this thesis provides evidence that enzymes on the IAM, originating from the Golgi apparatus in development, have an important function in penetration of the outer investments of the oocyte, and are aided in penetration by plasminogen in the female reproductive tract.
Resumo:
In the present study, different freezing systems (Styrofoam box and Mini Digitcool ZH 400) and storage volumes (0.5- and 0.25-mL straws) were compared with regard to sperm kinetics and plasma membrane integrity of frozen and thawed semen. For that, three ejaculates from four animals were frozen in Styrofoam box and Mini Digitcool ZH 400 machine. The 0.5-mL straws were thawed at 46°C for 20 seconds, and the 0.25-mL straws were thawed at 46°C for 12 seconds. Statistical analysis was performed using program R of descriptive analysis box plot, followed by analysis of variance using PROC MIXED of SAS 9.1 package. Variances of 5% were considered as different. There was no interaction between the straw sizes and volumes; however, statistical differences were observed between the semen storage volumes. The 0.5-mL straws had higher total motility (%), progressive motility (%), average path velocity (μm/s), straight-line velocity (μm/s), curvilinear velocity (μm/s), and rapid sperm percentage (%) than the 0.25-mL straws. However, plasma membrane integrity analysis did not differ between the two straws. Thus, it is possible to conclude that equine sperm cryopreserved in 0.5-mL straws has better sperm kinetics than when stored in 0.25-mL straws. Additionally, it is possible to conclude that automated systems that enable faster freezing rates result in a seminal quality that is similar to the one obtained by the conventional system using Styrofoam boxes. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in delta pH -0.3 (35% reduction) and delta pH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.
Resumo:
2016
Resumo:
2016
Resumo:
Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.
Resumo:
Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation. (C) 2004 Wiley-Liss, Inc.