855 resultados para speed-based diagnostics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vehicle detectors have been installed at approximately every 300 meters on each lane on Tokyo metropolitan expressway. Various traffic data such as traffic volume, average speed and time occupancy are collected by vehicle detectors. We can understand traffic characteristics of every point by comparing traffic data collected at consecutive points. In this study, we focused on average speed, analyzed road potential by operating speed during free-flow conditions, and identified latent bottlenecks. Furthermore, we analyzed effects for road potential by the rainfall level and day of the week. It’s expected that this method of analysis will be utilized for installation of ITS such as drive assist, estimation of parameters for traffic simulation and feedback to road design as congestion measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Practical applications for stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics and industrial automation. The initial motivation behind this work was to produce a stereo vision sensor for mining automation applications. For such applications, the input stereo images would consist of close range scenes of rocks. A fundamental problem faced by matching algorithms is the matching or correspondence problem. This problem involves locating corresponding points or features in two images. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This work implemented a number of areabased matching algorithms to assess their suitability for this application. Area-based techniques were investigated because of their potential to yield dense depth maps, their amenability to fast hardware implementation, and their suitability to textured scenes such as rocks. In addition, two non-parametric transforms, the rank and census, were also compared. Both the rank and the census transforms were found to result in improved reliability of matching in the presence of radiometric distortion - significant since radiometric distortion is a problem which commonly arises in practice. In addition, they have low computational complexity, making them amenable to fast hardware implementation. Therefore, it was decided that matching algorithms using these transforms would be the subject of the remainder of the thesis. An analytic expression for the process of matching using the rank transform was derived from first principles. This work resulted in a number of important contributions. Firstly, the derivation process resulted in one constraint which must be satisfied for a correct match. This was termed the rank constraint. The theoretical derivation of this constraint is in contrast to the existing matching constraints which have little theoretical basis. Experimental work with actual and contrived stereo pairs has shown that the new constraint is capable of resolving ambiguous matches, thereby improving match reliability. Secondly, a novel matching algorithm incorporating the rank constraint has been proposed. This algorithm was tested using a number of stereo pairs. In all cases, the modified algorithm consistently resulted in an increased proportion of correct matches. Finally, the rank constraint was used to devise a new method for identifying regions of an image where the rank transform, and hence matching, are more susceptible to noise. The rank constraint was also incorporated into a new hybrid matching algorithm, where it was combined a number of other ideas. These included the use of an image pyramid for match prediction, and a method of edge localisation to improve match accuracy in the vicinity of edges. Experimental results obtained from the new algorithm showed that the algorithm is able to remove a large proportion of invalid matches, and improve match accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings involves a combination of different techniques of signal enhancing and analysis. The most common procedure presents a first step of order tracking and synchronous averaging, able to remove the undesired components, synchronous with the shaft harmonics, from the signal, and a final step of envelope analysis to obtain the squared envelope spectrum. This indicator has been studied thoroughly, and statistically based criteria have been obtained, in order to identify damaged bearings. The statistical thresholds are valid only if all the deterministic components in the signal have been removed. Unfortunately, in various industrial applications, characterized by heterogeneous vibration sources, the first step of synchronous averaging is not sufficient to eliminate completely the deterministic components and an additional step of pre-whitening is needed before the envelope analysis. Different techniques have been proposed in the past with this aim: The most widely spread are linear prediction filters and spectral kurtosis. Recently, a new technique for pre-whitening has been proposed, based on cepstral analysis: the so-called cepstrum pre-whitening. Owing to its low computational requirements and its simplicity, it seems a good candidate to perform the intermediate pre-whitening step in an automatic damage recognition algorithm. In this paper, the effectiveness of the new technique will be tested on the data measured on a full-scale industrial bearing test-rig, able to reproduce the harsh conditions of operation. A benchmark comparison with the traditional pre-whitening techniques will be made, as a final step for the verification of the potentiality of the cepstrum pre-whitening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transmission path from the excitation to the measured vibration on the surface of a mechanical system introduces a distortion both in amplitude and in phase. Moreover, in variable speed conditions, the amplification/attenuation and the phase shift, due to the transfer function of the mechanical system, varies in time. This phenomenon reduces the effectiveness of the traditionally tachometer based order tracking, compromising the results of a discrete-random separation performed by a synchronous averaging. In this paper, for the first time, the extent of the distortion is identified both in the time domain and in the order spectrum of the signal, highlighting the consequences for the diagnostics of rotating machinery. A particular focus is given to gears, providing some indications on how to take advantage of the quantification of the disturbance to better tune the techniques developed for the compensation of the distortion. The full theoretical analysis is presented and the results are applied to an experimental case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents an acoustic emission (AE) based fault diagnosis for low speed bearing using multi-class relevance vector machine (RVM). A low speed test rig was developed to simulate the various defects with shaft speeds as low as 10 rpm under several loading conditions. The data was acquired using anAEsensor with the test bearing operating at a constant loading (5 kN) andwith a speed range from20 to 80 rpm. This study is aimed at finding a reliable method/tool for low speed machines fault diagnosis based on AE signal. In the present study, component analysis was performed to extract the bearing feature and to reduce the dimensionality of original data feature. The result shows that multi-class RVM offers a promising approach for fault diagnosis of low speed machines.