967 resultados para spectrally resolved waveform


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5 degrees S, 60 degrees W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm(-1) and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm(-1) in the main pollution layer (up to 2 km height). Angstrom exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-junction solar cells are widely used in high-concentration photovoltaic systems (HCPV) attaining the highest efficiencies in photovoltaic energy generation. This technology is more dependent on the spectral variations of the impinging Direct Normal Irradiance (DNI) than conventional photovoltaics based on silicon solar cells and consequently demands a deeper knowledge of the solar resource characteristics. This article explores the capabilities of spectral indexes, namely, spectral matching ratios (SMR), to spectrally characterize the annual irradiation reaching a particular location on the Earth and to provide the necessary information for the spectral optimization of a MJ solar cell in that location as a starting point for CPV module spectral tuning. Additionally, the relationship between such indexes and the atmosphere parameters, such as the aerosol optical depth (AOD), precipitable water (PW), and air mass (AM), is discussed using radiative transfer models such as SMARTS to generate the spectrally-resolved DNI. The network of ground-based sun and sky-scanning radiometers AERONET (AErosol RObotic NETwork) is exploited to obtain the atmosphere parameters for a selected bunch of 34 sites worldwide. Finally, the SMR indexes are obtained for every location, and a comparative analysis is carried out for four architectures of triple junction solar cells, covering both lattice match and metamorphic technologies. The differences found among cell technologies are much less significant than among locations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects was investigated. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. In addition, we have included the electrical and optical noise in our analysis to give more accurate overall performance of the FSOI system. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain an overall signal-to-noise ratio improvement of 3 dB. Furthermore, system density is increased by up to 4 channels/mm2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin-film photovoltaics have provided a critical design avenue to help decrease the overall cost of solar power. However, a major drawback of thin-film solar cell technology is decreased optical absorption, making compact, high-quality antireflection coatings of critical importance to ensure that all available light enters the cell. In this thesis, we describe high efficiency thin-film InP and GaAs solar cells that utilize a periodic array of nanocylinders as antireflection coatings. We use coupled optical and electrical simulations to find that these nanophotonic structures reduce the solar-weighted average reflectivity of InP and GaAs solar cells to around 1.3 %, outperforming the best double-layer antireflection coatings. The coupling between Mie scattering resonances and thin-film interference effects accurately describes the optical enhancement provided by the nanocylinders. The spectrally resolved reflectivity and J-V characteristics of the devices under AM1.5G solar illumination are determined via the coupled optical and electrical simulations, resulting in predicted power conversion efficiencies > 23 %. We conclude that the nanostructured coatings reduce reflection without negatively affecting the electronic properties of the InP and GaAs solar cells by separating the nanostructured optical components from the active layer of the device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.