968 resultados para space-temporal variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies on the avalanche risk in alpine settlements suggested a strong dependency of the development of risk on variations in damage potential. Based on these findings, analyses on probable maximum losses in avalanche-prone areas of the municipality of Davos (CH) were used as an indicator for the long-term development of values at risk. Even if the results were subject to significant uncertainties, they underlined the dependency of today's risk on the historical development of land-use: Small changes in the lateral extent of endangered areas had a considerable impact on the exposure of values. In a second step, temporal variations in damage potential between 1950 and 2000 were compared in two different study areas representing typical alpine socio-economic development patterns: Davos (CH) and Galtür (A). The resulting trends were found to be similar; the damage potential increased significantly in number and value. Thus, the development of natural risk in settlements can for a major part be attributed to long-term shifts in damage potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Non-Indigenous Species (NIS) is defined as an organism, introduced outside its natural past or present range of distribution by humans, that successfully survives, reproduces, and establish in the new environment. Harbors and tourist marinas are considered NIS hotspots, as they are departure and arrival points for numerous vessels and because of the presence of free artificial substrates, which facilitate colonization by NIS. To early detect the arrival of new NIS, monitoring benthic communities in ports is essential. Autonomous Reef Monitoring Structures (ARMS) are standardized passive collectors that are used to assess marine benthic communities. Here we use an integrative approach based on multiple 3-month ARMS deployment (from April 2021 to October 2022) to characterize the benthic communities (with a focus on NIS) of two sites: a commercial port (Harbor) and a touristic Marina (Marina) of Ravenna. The colonizing sessile communities were assessed using percentage coverage of the taxa trough image analyses and vagile fauna (> 2 mm) was identified morphologically using a stereomicroscope and light microscope. Overall, 97 taxa were identified and 19 of them were NIS. All NIS were already observed in port environments in the Mediterranean Sea, but for the first time the presence of the polychaete Schistomeringos cf. japonica (Annenkova, 1937) was observed; however molecular analysis is needed to confirm its identity. Harbor and Marina host significantly different benthic communities, with significantly different abundance depending on the sampling period. While the differences between sites are related to their different environmental characteristic and their anthropogenic pressures, differences among times seems related to the different life cycle of the main abundant species. This thesis evidenced that ARMS, together with integrative taxonomic approaches, represent useful tools to early detect NIS and could be used for a long-term monitoring of their presence.