648 resultados para sorption
Resumo:
A study was conducted to evaluate the sorption and desorption of 14C herbicide saflufenacil (pyrimidinedione) in two soils in the State of São Paulo, classified as Red Yellow Latosol with clayey texture (LVA-1) and medium texture (LVA-2), using the batch method through isotherms. The soils were air dried and sieved a 2 mm mesh. The radioactivity was determined by liquid scintillation spectrometry in acclimatized room (25 ± 2 °C). Sorption isotherms were conducted for 5 concentrations of saflufenacil (5.0; 2.5; 1.0; 0.5 and 0.05 μg mL-1) and the results were adjusted to the Freundlich equation, thus obtaining the parameters of sorption followed by two extractions with 0.01 M CaCl2 to determine desorption parameters similarly to sorption. The results showed that saflufenacil sorption was low for both soils studied, being greater for the LVA with higher organic matter content. The desorption coefficients were greater than their sorption coefficients, suggesting the occurrence of hysteresis. The sorption and desorption isotherms (classified as type C isotherms), hysteresis and the t-test between the angular coefficient of the respective isotherms showed that both the sorption and desorption occur with equal intensity.
Resumo:
Moisture desorption isotherms of fresh and heat blanched pumpkins (Cucurbita moschata) were determined at three temperatures (30, 50 and 70 °C), using the standard, static-gravimetric method. The GAB, Oswin, BET, Halsey, and Henderson models were tested and, with the exception of the Henderson model, showed satisfactory fits to the experimental data. The GAB model was used to analyze the fitting ability to describe the isotherm type. The shape of the desorption isotherms of fresh and blanched pumpkin at 30 and 50 °C was intermediate to types II and III, and at 70 °C it was of type II for the blanched pumpkin and close to type II for the fresh sample. The influence of blanching on the decrease in equilibrium moisture was very small compared to the fresh samples and it was related to the loss of soluble solids during the pre-treatment. The isosteric heat of sorption measures indicated that a larger amount of heat was required to remove the water from the fresh samples than from the blanched ones.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.
Resumo:
The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB) model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.
Resumo:
An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.
Resumo:
Des études de sorption/désorption ont été effectuées pour neuf contaminants émergents sélectionnés (caféine, sulfaméthoxazole, déséthylatrazine, carbamazépine, atrazine, estradiol, éthinylestradiol, noréthindrone et diclofénac) dans les boues usées provenant de trois systèmes différents. Les contaminants incluent une variété de classes de composés (pesticides, hormones et pharmaceutiques) qui possèdent des propriétés physicochimiques différentes. L’objectif de ces travaux est de modéliser leur comportement dans une station d’épuration, en présence d’une phase particulaire et d’une phase aqueuse, et du même coup, de mieux comprendre leur devenir lors de leur rejet dans l’environnement. Le coefficient octanol-eau (log Kow) permet de bien interpréter les résultats et nous permet de classer les composés selon deux types de comportements observés : les composés avec un log Kow inférieur à 3 montrent peu ou pas de sorption alors que les composés avec un log Kow supérieur à 3 montrent une sorption variant de 30 à 90 % durant les premières minutes, suivi d’une sorption lente durant les heures suivantes. Une augmentation du contenu organique favorise la sorption des composés hydrophobes alors qu’un changement de pH peut modifier la charge à la surface des particules et également la charge des analytes. Les résultats ont montré que seul le diclofénac était sensible aux variations de pH étudiés. Dans une telle situation, il est nécessaire d’utiliser le facteur d’hydrophobicité corrigé en fonction du pH (log Dow). Le coefficient de distribution solide-eau (log Kd) a été déterminé pour chaque composé à la fin de chaque expérience de sorption et se situe entre -0.3 et 2.6. Avec l’augmentation de l’hydrophobicité, la désorption diminue avec le temps et avec l’étape de rinçage. Pour simuler le relargage dans les systèmes aquatiques, les facteurs de rinçage ont été déterminés pour estimer le nombre de rinçages qui seraient nécessaire pour désorber 50 et 99 % de la concentration initialement sorbée. Les bilans de masse ont été effectués après chaque expérience dans le but de ne pas surestimer les capacités de sorption d’un composé et se situent entre 7 et 25 % pour l’estradiol, la noréthindrone et le sulfaméthoxazole et entre 44 et 103 % pour l’éthinylestradiol, l’atrazine, la déséthylatrazine, la carbamazépine, la caféine et le diclofénac.
Resumo:
Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix
Resumo:
The complexation of Cu by sewage sludge-derived dissolved organic matter (SSDOM) is a process by which the environmental significance of the element may become enhanced due to reduced soil sorption and, hence, increased mobility. The work described in this paper used an ion selective electrode procedure to show that SSDOM complexation of Cu was greatest at intermediate pH values because competition between hydrogen ions and Cu for SSDOM binding sites, and between hydroxyl ions and SSDOM as Cu ligands, was lowest at such values. Batch sorption experiments further showed that the process of Cu complexation by SSDOM provided an explanation for enhanced desorption of Cu from the solid phase of a contaminated, organic matter-rich, clay loam soil, and reduced adsorption of Cu onto the solid phase of a sandy loam soil. Complexation of Cu by SSDOM did not affect uptake of Cu by spring barley plants, when compared to free ionic Cu, in a sand-culture pot experiment. However, it did appear to lead to greater biomass yields of the plant; perhaps indicating that the Cu-SSDOM complex had a lower toxicity towards the plant than the free Cu ion.
Resumo:
The adsorption of nutrient elements is one of the most important solid- and liquid-phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3 , organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r(2) values for the Langmuir isotherm were highly significant (r(2) =0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.
Resumo:
Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4- treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R-2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 degreesC, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. C-w was lower). The low-moisture-content limit (m(c)) to this relation also differed, being lower in the mutant near-isogenic lines (5.4-5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semilogarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity. was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 °C, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. CW was lower). The low-moisture-content limit (mc) to this relation also differed, being lower in the mutant near-isogenic lines (5.4–5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semi-logarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.
Resumo:
Pine wood and barley straw biochar amendments to Kettering and Cameroon sandy silt loam soils (15, 30, or 150 mg biochar g−1 soil) caused significant reductions (up to 80%,