47 resultados para sombreado
Resumo:
Definición, construcción y puesta en marcha de un trazador de Curvas I-V en placas fotovoltaicas con fines docentes, comparándolo con otros métodos de medida. Para lo cual se han realizado diferentes ensayos: Barrido de Curva V-I módulo KC50 Barrido de Curva V-I módulo KC85GX-2P Barrido de Curva V-I con sombreado de células Barrido de Curva V-I con conexión en serie y en paralelo Barrido de Curva V-I sin diodos “by-pass” Barrido de Curva V-I con conexión en serie y en paralelo sin diodos “by-pass” Abstract Definition, construction and startup of a tracer IV curves in photovoltaic panels for teaching purposes, compared to other measurement methods. The trials completed can be summarized as follows: Sweep curve V-I module KC50. Sweep curve V-I module KC85GX-2P Sweep curve V-I with shaded cells. Sweep curve V-I with series and parallel connections. Sweep curve V-I without “by-pass” diode. Sweep curve V-I with series and parallel connections without “by-pass” diodes.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
Relieve por sombreado
Resumo:
Relieve por sombreado
Resumo:
Escala expresada en otras unidades
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
Escala expresada en otras unidades
Resumo:
En el mar naves de la época y animal fantástico
Resumo:
En el mar naves de la época y animal fantástico
Resumo:
En el margen superior: "Diccionario Geográfico-Estadístico-Histórico Atlas de España y sus posesiones de ultramar"
Resumo:
Inscripción: "Presentada al Rey nuestro señor por el Excmo. Sr. Baylº Fr. Dn. Antonio Valdes...y construida por...Dn Vicente Tofiño de Sn. Miguel..."
Resumo:
Larga nota bibliográfica dando cuenta de los documentos que se han tenido en cuenta para la confección de este mapa
Resumo:
Escala también expresada en: 1200 Palmos Valencianos
Resumo:
O presente estudo foi dividido em três capitulos, todos realizados na Estação Experimental de Ciências Florestais de Anhembi/SP, entre os anos de 2014 e 2015. O primeiro estudo intitulado de \"Variação mensal da fitomassa da forragem em função do grau de cobertura do dossel em sistemas silvipastoris\", foi realizado em 3 monoculturas de 13 anos de idade, com área útil de 50 m x 30 m para coleta de pasto as mesmas efectuadas mensalmente. Os resultados apresentaram que não há relação significativa entre a cobertura do dossel e fitomassa da forragem pelo caso de que o sub-bosque estava muito sombreado. Entretanto, houve uma relação indireta entre área basal e fitomassa. Evidenciando-se que o talhão de Eucalipto urograndis apresentou as melhores condições de crescimento e disponibilidade de materia seca mensal para Bachiaria decumbens além de obter a maior porcentagem de folha entre todos os tratamentos. Ao contrario, no talhão de Pinus tecunumanii, foi encontrada a menor disponibilidade de materia seca mensal e por consequência, menor porcentagem de folha. O segundo estudo foi chamado de: \"Disponibilidade de fitomassa de B. decumbens, em um sistema silvipastoril com eucalipto: o papel da radiação\" onde o componente florestal foi o eucalyptus (COP-1377) de 2 anos de idade plantado em uma área útil de 10 ha, dividido em 3 tratamentos (onda longa-OL (39 m), onda curta-OC (21 m), e testemunha-T) e instalado em 4 blocos distintos. Foram realizadas duas coletas dutante o período de verão e de inverno, onde foi possível verificar que o tratamento OL mostrou maior disponibilidade de fitomassa a 65% de irradiância além de obter maior porcentagem da fração folha. Este foi favorecido pelo maior espaçamento entre as aléias. Contudo, houve ataque de cigarinha na pastagem, mantendo a queda da disponibilidade no período de inverno. O terceiro estudo intitulado de: \"Variaçoes arquiteturais de uma monocultura de E. urograndis em função de sua posição espacial\", foi também realizado na monocultura do primeiro estudo, numa área de 7 ha. Para este estudo, realizou-se um inventario florestal, logo após, dividiu-se as árvores por sua classe diamétrica e selecionou-se aleatoriamente 60 árvores para cubagem, e destas, escolheu-se 15 para determinação da fitomassa e respectiva densidade da madeira. Para a obtenção da fitomassa dividiu-se as árvores em três frações de análise: tronco, galhos e folha. Além disso, as 15 árvores foram divididas em: bordadura, intermediária e centro da parcela, de acordo com a sua localização. Verificou-se que a bordadura apresentou os maiores crescimentos em DAP, altura, largura de copa e, que por consequência, obteve maior volume e fitomassa em todas suas frações. Também foi possível observar que tanto a bordadura quanto o centro apresentaram maior densidade básica em função da maior copa e altura das árvores incentivando a geração de mais fitomassa foliar. Finalmente conforme os três estudos realizados neste trabalho de pesquisa, concluiu-se que a radiação solar é fator chave na produtividade da cultura forrageira, demonstrando a necessidade de mais pesquisas sobre os sistemas agroforestais e silvipastoris para o sucesso de futuros emprendimentos.
Resumo:
Los dispositivos opto-electrónicos, tales como las células solares, las pantallas planas y los diodos LED (del inglés light emitting diodes), necesitan contactos eléctricos en la cara frontal por la que entra o sale la luz del dispositivo. Estos contactos causan pérdidas por reflexión y absorción de luz (sombra) y por resistencia eléctrica. En una primera aproximación estas pérdidas son contrapuestas, lo que mejora la sombra empeora la resistencia y viceversa. Hasta ahora esto se ha entendido como un compromiso inevitable que limita la eficiencia de conversión energética de los dispositivos opto-electrónicos: disminuir las pérdidas por resistencia eléctrica implica necesariamente aumentar las pérdidas ópticas por sombra. Esta tesis se ha encaminado a tratar de superar esta dificultad a través de la nanoestructuración de la malla de contacto frontal, con especial énfasis en el caso de las células solares de concentración. El objetivo es poder reducir simultáneamente las pérdidas por sombreado y resistencia en serie de la malla. Hemos encontrado, en base a experimentos, teoría y simulaciones, que para tamaños de linea pequeños, en el umbral del régimen de Rayleigh, pero no lo suficientemente pequeños como para que se den las resonancias plasmónicas más intensas (de tipo dipolar), los contactos hacen menos sombra de la que corresponde a su área geométrica. Se puede decir que los contactos se vuelven parcialmente invisibles. En una primera parte de introducción se ha presentado la influencia de la malla en las pérdidas por resistencia en serie producidas en la célula. Se ha analizado el peso de las distintas variables y se ha escogido la reducción del espaciado entre líneas como alternativa a desarrollar. Para no afectar a otras variables, se ha reducido acordemente la anchura de línea manteniendo el factor de sombra geométrico de las células estado del arte. Se ha calculado que para un caso ideal la ganancia puede ser de un 4% absoluto para mallas con líneas de anchura 400-600 nm distribuidas en periodos de 10-20 μm. Se ha visto como otros efectos eléctricos apuntan también a ese rango como óptimo...