968 resultados para soil sampling intensity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Inorganic phosphorus (Pi) usually controls the P availability in tropical soils, but the contribution of organic P (Po) should not be neglected, mainly in systems with low P input or management systems that promote organic matter accumulation. The aims of this study were to evaluate the changes in the Po fractions over time in soil fertilized and not fertilized with cattle manure and to correlate Po forms with available P extracted by anion exchange resin. The experiment was carried out under field conditions, in a sandy-clay loam Haplustox. The experimental design was a 2 x 9 randomized complete block factorial design, in which the first factor was manure application (20 t ha(-1)) or absence, and the second the soil sampling times (3, 7, 14, 21, 28, 49, 70, 91, and 112 days) after manure incorporation. Labile, moderately labile and non-labile Po fractions were determined in the soil material of each sampling. Manure fertilization increased the Po levels in the moderately labile and non-labile fractions and the total organic P, but did not affect the Po fraction proportions in relation to total organic P. On average, 5.1 % of total Po was in the labile, 44.4 % in the moderately labile and 50.5 % in the non-labile fractions. Available P (resin P) was more affected by the manure soluble Pi rather than by the labile Po forms. The labile and non-labile Po fractions varied randomly with no defined trend in relation to the samplings; for this reason, the data did not fit any mathematical model.
Resumo:
No-till has been used in many different regions of Brazil. However, depending on the location and intensity of machinery traffic, this has caused the problem of soil compaction and many producers are scarification the land as a solution to break through the layer that is restricting plant growth. The objective of this study was to evaluate the influence of scarification (0.30 m) in the physical properties of a dystrophic Alfisol comparing the results with a non-scarified contiguous area; both were previously conducted using no-till. The density and pressure of pre-consolidation were sampled in two areas of non-tillage, one with chiseling (PDCE) and one without (PDSE) by using the UMAS -Mobile Soil Sampling Unit built by NEMPA – Agroforestry Machinery and Tire Testing Center/FCA / UNESP, Botucatu ,SP. The UMAS is equipped with GPS which allows the samples to be georeferenced. The samples were evaluated in the laboratory through the collection of standardized rings. Sampling was performed at a dimension of 15 x 50 m, with 160 rings being collected. The samples containing rings which were used in determining the density and also for testing the consolidometer, were collected from the layers of 0 to 0.10 m, 0.10 to 0.20 m, 0.20 to 0.30 0.30 to I 0.40 m. For the odometer test the undisturbed sample rings were used in obtaining the load bearing capacity of the soil. The soil management adopted provided a decrease in soil density using no-tillage with scarification depths from 0.0 to 0.10 0.10 to 0.20 m while the other depths did not show any decrease. The pre-consolidation pressure in combination with soil aggregate resistance identified that the management process PDCE within all layers was subjected to water content reliability regarding a greater load bearing capacity of the soil. For the PDSE that only was possible in the 0 to 0.10 m, showing greater consolidation of this layer.
Resumo:
Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity.
Resumo:
Gran parte de los procesos microbianos que contribuyen a la fertilidad de los agroecosistemas y el ciclado de nutrientes ocurren en el suelo. Este ciclado de nutrientes depende críticamente de la actividad microbiológica de los suelos, la cual a su vez está mediada por la estructura y funcionamiento de la microbiota edáfica. En este contexto, el objetivo de este trabajo, fue determinar si la actividad microbiana puede ser buena indicadora de la intensidad de uso del suelo, analizando: 1- si las diferencias en la intensidad de uso del suelo se relacionan con diferencias en la actividad microbiológica estimada a través de la respiración edáfica y la actividad enzimática; y 2- las posibles relaciones entre estas variables microbiológicas y las variables físico-químicas. Entre 2008 y 2010 se realizaron muestreos trimestrales en campos de la provincia de Buenos Aires en suelos Argiudoles bajo diferentes usos: 1- Agricultura intensiva continua, 2- Agricultura reciente, y 3- Pastizales naturalizados. Tres sitios de muestreo se seleccionaron como réplicas para cada uso de suelo, con 5 muestras por fecha y réplica. La actividad microbiana se evaluó midiendo la respiración edáfica y la actividad de las enzimas nitrogenasas y se analizaron variables físico- químicas. Tanto las variables microbiológicas como las físico-químicas se analizaron mediante Kruskall-Wallis (P < 0,05). Se exploró la asociación entre las variables físico-químicas y microbiológicas aplicando el coeficiente de correlación no paramétrico (Spearman). Los distintos usos de un mismo suelo presentaron diferencias en la actividad microbiológica. La respiración edáfica fue significativamente mayor en los pastizales naturalizados que en los sistemas con agricultura. La actividad nitrogenasa resultó significativamente mayor en los pastizales naturalizados respecto de la agricultura continua y no se diferenció significativamente de la agricultura reciente. Las variables físico- químicas resultaron menos consistentes en detectar diferencias entre usos. Se detectaron correlaciones significativas entre la actividad microbiológica y algunas de las variables físico-químicas. Los resultados muestran que la actividad microbiológica puede resultar útil para diferenciar intensidades de usos de suelo.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2006 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in September 2002. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m and 0.15 to 0.3 m of the mineral soil from each of the experimental plots in March and October 2004. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in April and September 2005. Samples of the soil cores per plot were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, Skalar, Breda, Netherlands).
Resumo:
This data set contains measurements of phosphorus fractions (Hedley fractions) in soil collected 2007 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied. Sequentially, 20 ml NaHCO3 (adjusted to pH 8.5), 30 ml NaOH, and 35 ml HCl were used as extraction solutions for 0.5 g soil. The last step comprised the combustion (550 °C) of the remaining soil to destroy all organic material followed by shaking with 20 ml H2SO4. Organic P concentrations of the respective fractions were calculated as the difference between total dissolved P and inorganic P. Duplicate phosphate concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2008 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.