1000 resultados para soil compaction
Resumo:
The objective of this study was to determine the best combination of management options for upland rice production: seed treatment, N management and soil compaction in zero and conventional tillage methods.
Resumo:
Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.
Resumo:
Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.
Resumo:
Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.
Resumo:
A compactação é um dos fatores mais agravantes para a qualidade do solo, porém o seu efeito na comunidade e atividade enzimática microbiana não tem sido suficientemente estudado. Seis níveis de compactação foram obtidos pela passagem de tratores com diferentes pesos em um Latossolo Vermelho, e a densidade final foi medida. Amostras de solo foram coletadas nas profundidades de 0-10 e 10-20 cm, após a colheita do milho. O efeito da compactação foi evidente em todos os parâmetros estudados, mas nem sempre foi significativo. A contagem das bactérias totais reduziu significativamente em 22-30 %, e a das nitrificantes, em 38-41 %, no solo com maior densidade em relação ao controle. Contudo, a população de fungos aumentou de 55 a 86 %, e a das bactérias desnitrificantes, de 49 a 53 %. A atividade da desidrogenase diminuiu de 20 a 34 %; a da urease, de 44 a 46 %; e a da fosfatase, de 26 a 28 %. O conteúdo de matéria orgânica e o pH do solo diminuíram na camada 0-0,10 em relação à de 0,10-0,20 m e influíram possivelmente na redução das contagens microbianas exceto das bactérias desnitrificantes, e na atividade das enzimas, menos a da urease. Esses resultados indicam que a compactação do solo teve influência na comunidade de microrganismos aeróbios e na sua atividade. Esse efeito pode alterar a ciclagem de nutrientes e diminuir a produção da planta.
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The capacity to use geologic materials (soil and rock) that are available in the surrounding environment is inherent to the human civilization and has contributed to the evolution of societies throughout the course of history. The use of these materials in the construction of structures such as houses, roads, railways or dams, stirred the improvement of socioeconomic and environmental conditions. Several reports of structural problems on embankments can be found throughout history. A considerable number of those registers can be linked to inadequate compaction, demonstrating the importance of guaranteeing a suitable quality of soil compaction. Various methodologies and specifications of compaction quality control on site of earthworks, based on the fill moisture content and dry unit weight, were developed during the 20th century. Two widely known methodologies are the conventional and nuclear techniques. The conventional methods are based on the use of the field sand cone test (or similar) and sampling of material for laboratory-based testing to evaluate the fill dry unit weight and water content. The nuclear techniques measure both parameters in the field using a nuclear density gauge. A topic under discussion in the geotechnical community, namely in Portugal, is the comparison between the accuracy of the nuclear gauge and sand cone test results for assessing the compaction and density ratio of earth fills, particularly for dams. The main purpose of this dissertation is to compare both of them. The data used were acquired during the compaction quality control operations at the Coutada/Tamujais dam trial embankment and core construction. This is a 25 m high earth dam located in Vila Velha de Rodão, Portugal. To analyse the spatial distribution of the compaction parameters (water content and compaction ratio), a 3D model was also developed. The main results achieved are discussed and finally some considerations are put forward on the suitability of both techniques to ensure fill compaction quality and on additional research to complement the conclusions obtained.
Resumo:
Los suelos estabilizados mediante compactación, permiten obtener materiales con ventajas ténicas y economicas en diferentes tipos de obras de ingeniería. Ejemplos de su uso se tiene en bases viales de autopistas, rutas o calles urbanas, pistas de aterrizaje, barreras de contención para enterramientos sanitarios o lagunas de estabilización, apoyos de plateas para fundación de edificios, losas industriales, entre otras aplicaciones. Las fallas en este tipo de construcciones pueden resultar en catástrofes ambientales, sociales y elevadas pérdidas económicas, por lo que resulta de gran importancia optimizar el diseño e incrementar la seguridad de este tipo de construcciones. Las obras con estas características involucran grandes volúmenes y/o superficies que requieren controles sistemáticos durante su desarrollo, a los fines de garantizar el cumplimiento de las propiedades de los materiales establecidos en la etapa de diseño. De esta forma, es necesario contar con ensayos de campo sencillos, confiables y eficientes que permitan identificar propiedades físicas, mecánicas e hidráulicas. Las geoestructuras generadas mediante la compactación del suelo próximo al sector de construcción pueden funcionar adecuadamente, con reducidos costos de material y transporte. Su estabilización puede ejecutarse en forma natural, o con la incorporación de agregados minerales como bentonita, cal o cemento. Estas incorporaciones mejoran las propiedades hidráulicas y mecánicas del material, optimizando el comportamiento requerido para la obra. Para establecer la forma en la que estos minerales modifican el comportamiento del suelo local compactado deben realizarse investigaciones especiales con los materiales involucrados. En el ámbito internacional existen numerosas investigaciones sobre comportamiento de suelos compactados, no obstante, si bien aportan antecedentes para la planificación de estudios locales, sus resultados no pueden trasladarse de manera directa. Las características propias del suelo local constituye la principal variable debido a la diversidad en las propiedades geotécnicas de cada Región. Esta investigación, se focaliza en el empleo de suelos limosos de la formación loéssica de la zona central de Argentina. Los suelos de la llanura cordobesa poseen comportamientos particulares, los cuales son contemplados en los diseños presentados como resutado de las investigaciones internacionales. Esta particularidad se relaciona con su inestabilidad, lo que los clasifica como suelos colapsables. Los resultados obtenidos en este trabajo podrán ser extendidos a una gran superficie de la Provincia de Córdoba y a la Región Pampeana en general, a los fines de establecer recomendaciones de diseño y construcción para la confección de Pliegos de Especificaciones Técnicas de diferentes tipos de obras públicas y privadas. El estudio contempla la ejecución de un plan experimental a escala de laboratorio y campo. Los materiales corresponden a suelo limosos puros, y diferentes agregados tales como bentonita, cal y cemento. Se planifican ensayos para evaluar el desempeño del material, a partir de la confección de muestras preparadas con diferentes condiciones de compactación (energía, humedad y método), y en forma de mezcla con los distintos tipos de agregados. Se realizarán ensayos de permeabilidad en celdas de pared rígida y flexible, junto a ensayos mecánicos de compresión confinada, simple y triaxial. Para el trabajo experimental de campo se prevé la ejecución de terraplenes de prueba instrumentados con tensiómetros e infiltrómetros para evaluar el comportamiento hidraúlico en el tiempo, junto con ensayos de penetración y plato de carga para la caracterización mecánica. En forma conjunta se propone el desarrollo de modelos numéricos de caracterización hidromecánica. Stabilized soils by compaction, produce materials technical and economic advantages in different types of engineering works. For example, road bases in highways, roads or city streets, containment barriers for sanitary landfill or stabilization ponds, foundation support of building, industrial flat, and other applications. Failures can result in environmental catastrophes, social, and economic loss, so it is important to optimize the design and increase the safety of such buildings. These works involve large surfaces that require systematic tests during construction, so it is necessary to have simple field tests, reliable and efficient to identify physical, mechanical and hydraulic properties. The geo-structures generated by local soil compaction have reduced material and transportation costs. Stabilization can be naturally, or with the addition of mineral aggregates as bentonite, lime and cement. These additions improve the hydraulic and mechanical properties of the material. So, special investigations should be conducted with the materials involved. There are many international studies on compacted soils behavior but their results can not be transferred directly due to the particularities of regional soils. For this research silty soils of central Argentina are the main focus. The soils of Córdoba plains are instability, so are classified as collapsible soils. The results obtained in this work may be extended to a large area of the Province of Cordoba and the Pampas region in general, in order to establish design and construction recommendations. The study includes laboratory and field tests. The materials are pure silty soil, and different aggregates such as bentonite, lime and cement. Tests are planned to evaluate the performance. Laboratory includes rigid and flexible wall cells, confined, triaxial and simple compression tests. For field experimental instrumented embankments will be constructed. A numerical hydromechanical model will be developed.
Resumo:
The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.
Resumo:
Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.
Resumo:
Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.
Resumo:
Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).