991 resultados para soil CO2 efflux
Resumo:
Few studies have examined the effects of temperature on spatial and temporal trends in soil CO2-C emissions in Antarctica. In this work, we present in situ measurements of CO2-C emissions and assess their relation with soil temperature, using dynamic chambers. We found an exponential relation between CO2 emissions and soil temperature, with the value of Q10 being close to 2.1. Mean emission rates were as low as 0.026 and 0.072 g of CO2-C m-2 h-1 for bare soil and soil covered with moss, respectively, and as high as 0.162 g of CO2-C m-2 h-1 for soil covered with grass, Deschampsia antarctica Desv. (Poaceae). A spatial variability analysis conducted using a 60-point grid, for an area with mosses (Sannionia uncianata) and D. antarctica, yielded a spherical semivariogram model for CO2-C emissions with a range of 1 m. The results suggest that soil temperature is a controlling factor on temporal variations in soil CO2-C emissions, although spatial variations appear to be more strongly related to the distribution of vegetation types. © 2010 Elsevier B.V. and NIPR.
Resumo:
The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil CO2 emission (F-CO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere. F-CO2 varies in time and space depending on environmental conditions, including the management of the agricultural area. The aim of this study was to investigate the spatial variability structure of F-CO2 and soil attributes in a mechanically harvested sugarcane area (green harvest) using fractal dimension (D-F) derived from isotropic variograms at different scales (fractograms). F-CO2 showed an overall average of 1.51 mu mol CO2 m(-2) s(-1) and correlated significantly (P < 0.05) with soil physical attributes, such as soil bulk density, air-filled pore space, macroporosity and microporosity. Topologically significant DF values were obtained from the characterization of F-CO2 at medium and large scales (above 20 m), with values of 2.92 and 2.90, respectively. The variations in D-F with scales indicate that the spatial variability structure of F-CO2 was similar to that observed for soil temperature and total pore volume and was the inverse of that observed for other soil attributes, such as soil moisture, soil bulk density, microporosity, air-filled pore space, silt and clay content, pH, available phosphorus and the sum of bases. Thus, the spatial variability structure of F-CO2 presented a significant relationship with the spatial variability structure for most soil attributes, indicating the possibility of using fractograms as a tool to better describe the spatial dependence of variables along the scale. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
Baseline of soil CO2 flux in the Hontomin site (Burgos, Spain)
Resumo:
In the framework of a global investigation of the Spanish natural analogues of CO2 storage and leakage, four selected sites from the Mazarrón?Gañuelas Tertiary Basin (Murcia, Spain) were studied for computing the diffuse soil CO2 flux, by using the accumulation chamber method. The Basin is characterized by the presence of a deep, saline, thermal (?47 ?C) CO2-rich aquifer intersected by two deep geothermal exploration wells named ?El Saladillo? (535 m) and ?El Reventón? (710 m). The CO2 flux data were processed by means of a graphical?statistical method, kriging estimation and sequential Gaussian simulation algorithms. The results have allowed concluding that the Tertiary marly cap-rock of this CO2-rich aquifer acts as a very effective sealing, preventing any CO2 leak from this natural CO2 storage site, being therefore an excellent scenario to guarantee, by analogy, the safety of a CO2 storage.
Resumo:
tThe rate of metabolic processes demanding energy in tree stems changes in relation with prevailing cli-matic conditions. Tree water availability can affect stem respiration through impacts on growth, phloemtransport or maintenance of diverse cellular processes, but little is known on this topic. Here we moni-tored seasonal changes in stem CO2efflux (Fs), radial growth, sap flow and non-structural carbohydrates intrees of Quercus ilex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). Fsincreased exponentially during the day by an effectof temperature, although sap flow attenuated the increase in Fsduring the day time. Over the year, Fsalso increased exponentially with increasing temperatures, but Fscomputed at a standard temperatureof 15?C (F15s) varied by almost 4-fold among dates. F15swas the highest after periods of stem growth anddecreased as tree water availability decreased, similarly in C and E treatments. The decline in F15swas notlinked to a depletion of soluble sugars, which increased when water stress was higher. The proportionof ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowestduring the peak of drought (6.5%). High within-year variability in F15smakes unadvisable to pool annualdata of Fsvs. temperature to model Fsat short time scales (hours to months) in Mediterranean-type for-est ecosystems. We demonstrate that water availability is an important factor governing stem CO2effluxand suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stemrespiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity,however.
Resumo:
Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.
Resumo:
陆地生态系统的呼吸作用是全球碳循环的一个主要通量和响应全球变化的一个潜在的重要正反馈机制。研究陆地生态系统的呼吸作用特征及其对生物环境因子的响应具有重要意义。本实验利用涡度相关技术对内蒙古库布齐沙漠两个不同土地利用类型的生态系统(人工种植杨树林和天然的油蒿灌丛)2006年生长季(4-10月)的生态系统呼吸特征进行比较研究,并分析了控制生态系统呼吸(Re)的生物与环境因子。结果表明:在这两种生态系统中Re存在着显著的日变化和季节变化,两个生态系统之间Re也存在着显著差异。Re日平均最大值分别2.0 mol CO2 m-2 s-1和1.7 mol CO2 m-2 s-1,都显著低于其他类似生态系统。杨树林和油蒿灌丛的生态系统Re与空气温度都表现出明显的指数相关关系,温度敏感指数Q10分别为1.11和1.12。两个生态系统的Re都与土壤水分含量呈显著的线性正相关关系,表明库布齐沙漠的生态系统的Re受到了土壤水分条件的限制。杨树林和油蒿灌丛生态系统呼吸Re都与叶面积指数的有线性回归关系,说明叶面积指数对生态系统呼吸有很好的指示作用。 本文还选择了两个生态系统内四种常见的土壤覆盖类型(分别是:杨树林生态系统的沙地SL和低洼地BL;油蒿灌丛生态系统的灌丛间BS和灌丛内WS),利用动态密闭气室测定了5-9月土壤呼吸的季节动态以及植株尺度的小尺度空间异质性。结果表明:1)不同土壤覆盖类型的土壤呼吸存在着很大的差异,其中低洼地BL和沙地SL分别有着最大和最小值,灌丛内WS的土壤呼吸要明显高于灌丛外BS。根生物量是导致它们之间差异的主要原因。2)土壤呼吸与土壤含水量之间的线性关系表明,土壤水分是两个生态系统土壤呼吸的限制因子。3)两个生态系统土壤呼吸存在着明显的小尺度差异,在靠近植株(0.5m内)地方的土壤呼吸的值明显高于距植株0.5m外的值,而0.5m外的土壤呼吸没有显著差异。小尺度土壤呼吸与根生物量之间明显的线性关系,说明根生物量是导致小尺度土壤呼吸差异的原因。本实验对沙漠生态系统的土壤呼吸和生态系统呼吸特征及其影响因子的研究,对准确的估计这一地区的碳收支有很大的帮助,为深入的理解干旱半干旱地区的生态系统碳循环提供了有价值的信息。
Resumo:
The introduction of nitrogen fixing species (NFS) in fast-growing tree plantations is an alternative option to reduce fertilizer inputs. However, the success of mixed-species plantations depends on the balance between positive interactions among species (resulting from facilitation and/or complementarity) and the negative effects of interspecific competition.Using a carbon budget approach and coupling measurements of standing biomass, aboveground litterfall and soil CO2 efflux, we assessed the influence of replacing half of eucalypt trees by Acacia mangium on total belowground carbon flux (TBCF), net primary production (NPP) and its partitioning between above- and belowground growth at two tropical sites in Brazil (Itatinga) and in Congo (Kissoko) exhibiting contrasting climates, edaphic conditions and wood productions.Annual soil CO2 efflux (FS) was significantly lower in the acacia monocultures than in eucalypt monocultures and mixed-species stands at both sites. Annual FS was significantly lower at Itatinga compared to Kissoko for all stands while TBCF was significantly lower in the eucalypt stands only. In the eucalypt monocultures we found a significantly lower aboveground NPP (ANPP) and wood production (wood NPP) at Kissoko compared to Itatinga that was almost fully balanced by a significantly higher belowground NPP (BNPP), leading to similar NPP. Similarly, acacia monocultures exhibited significantly higher ANPP and wood NPP at Itatinga than at Kissoko. The mixed-species stands exhibited a significantly lower wood NPP and ANPP than the eucalypt monocultures at the Brazilian site while NPP of the mixture was not significantly different than the average NPP of the two monocultures. At the Congolese site, NPP of the mixture was significantly higher than the average NPP of the two monocultures. NPP was similar in the mixed-species stand and the eucalypt monoculture with a significantly lower partitioning of NPP to belowground production, leading to a one third higher wood biomass at harvest in the mixed-species stand.A positive effect of growing eucalypts with the nitrogen fixing acacia trees on stand wood production occurred at Kissoko but not at Itatinga. Mixed-species plantations with NFS can be advocated at sites where the productive gains resulting from nitrogen fixation are not compromised by other resource limitations. © 2012 Elsevier B.V.
Resumo:
A aplicação de técnicas menos agressivas ao meio ambiente, como o uso de sistemas alternativos (corte e trituração), no lugar dos sistemas convencionais (corte-e-queima), além de favorecer o equilíbrio dos ciclos biogeoquímicos em áreas florestais, contribui para a mitigação das mudanças climáticas. O objetivo deste estudo foi estimar a emissão e o estoque de carbono do solo em sistemas de produção agropecuária em unidades rurais familiares do Nordeste paraense. Os estudos foram conduzidos em área de agricultor familiar no Município de Mãe do Rio, com temperatura média anual de 25 a 28°C, precipitação pluviométrica acimade 2500 mm e com solo predominante do tipo Latossolo Amarelo distrófico de textura média a argilosa. Foram selecionados 3 sistemas de uso da terra (cultivo com Schizolobium amazonicum, roça e silvipastoril) e mais uma área de referencia (floresta secundária), com 4 parcelas, medindo 20 m x 20 m cada. Foram avaliados a emissão de CO2 do solo, estoque de carbono no solo, estoque da liteira no solo e estoque de carbono na liteira. Os dados foram submetidos à Análise de Variância (ANOVA) e à comparação das médias pelo teste de Tukey, ao nível de 5%. Em todos os sistemas avaliados, as maiores emissões de CO2 do solo, observadas no período chuvoso, foram no sistema silvipastoril (5,02 Wmol CO2 m-2 s-1), em comparação à área da floresta secundária (3,56 Wmol CO2 m-2 s-1). De todas as áreas estudadas a maior emissão anual foi encontrada no sistema silvipastoril. O estoque de carbono no solo foi maior na área da floresta secundária, com total de 157± 31,10 Mg ha-1 (0-100 cm). O maior estoque de liteira no solo encontrado foi para a fração da liteira não-lenhosa, em todos os sistemas agropecuários e floresta secundária. O maior estoque de carbono na liteira não-lenhosa total foi observada no mês de janeiro/2010, com média geral de 4,31± 3,0 Mg ha-1, em todos os sistemas avaliados. Os sistemas de uso da terra que não utilizam o fogo no preparo da área, como os sistemas alternativos de corte-e-trituração, além de contribuirem para a mitigação das mudanças climáticas, ajudam na manutenção do funcionamento adequado dos ciclos biogeoquímicos nos ecossistemas terrestres.
Resumo:
Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.