984 resultados para soft lining materials
Resumo:
The activity of growing living bacteria was investigated using real-time and in situ rheology-in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus-strain COL and its isogenic cell wall autolysis mutant, RUSAL9-were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of the cultures of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the cultures of the two strains follows different and rich behaviors, with no counterpart in the optical density or in the population's colony-forming units measurements. While the viscosity of strain COL culture keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain culture decreases steeply, still in the exponential phase, remains constant for some time, and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviors, which were observed to be shear-stress-dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL culture, obtained with oscillatory shear, exhibit power-law behaviors whose exponents are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant culture have complex behaviors, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. Nevertheless, these behaviors reflect the bacteria growth stage.
Resumo:
We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L similar to tau(alpha). We relate the parameter alpha with the fractal dimension of the gel. In some regimes ( 0 < alpha < 1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G' similar to G" similar to w(alpha) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".
Resumo:
We report a scaling law that governs both the elastic and frictional properties of a wide variety of living cell types, over a wide range of time scales and under a variety of biological interventions. This scaling identifies these cells as soft glassy materials existing close to a glass transition, and implies that cytoskeletal proteins may regulate cell mechanical properties mainly by modulating the effective noise temperature of the matrix. The practical implications are that the effective noise temperature is an easily quantified measure of the ability of the cytoskeleton to deform, flow, and reorganize.
Resumo:
Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.
Resumo:
Aim: To evaluate the influence of a sub-epithelial connective tissue graft placed at the buccal aspect of implants installed immediately after tooth extraction on the dimensional changes of hard and soft tissues. Materials and Methods: In six Labrador dogs a bilateral partial- thickness dissection was made buccal to the second mandibular premolar. At the lingual aspect, full-thickness flaps were elevated. The teeth were extracted and implants installed immediately into the distal socket. A connective tissue graft was obtained from the palate and applied to the buccal aspect of the test sites, whereas contra-laterally, no graft was applied. The flaps were sutured to allow a non-submerged installation. After 4 months of healing, the animals were sacrificed, ground sections were obtained and histomorphometric analyses were performed. Results: After 4 months of healing, all implants were integrated (n = 6). Both at the test and at the control sites bone resorption occurred: 1.6 mm and 2.1 mm, respectively. The difference was not statistically significant. The coronal aspect of the peri-implant soft tissue was wider and located more coronally at the test compared with the control sites. The differences were statistically significant. Conclusions: The application of a connective tissue graft placed at the buccal aspect of the bony wall at implants installed immediately after tooth extraction yielded a minimal preservation of the hard tissues. The peri-implant mucosa, however, was significantly thicker and more coronally positioned at the test compared with the control sites. © 2012 John Wiley & Sons A/S.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The relationship between the microstructure and the magnetic properties of soft magnetic materials, have been studied by different researchers who seek to employ electrical systems, increasing their life span and reduce their energy consumption. Following this same line the Brazilian Synchrotron Light Laboratory developed a new synchrotron light source, the Sirius, where magnetic materials with high magnetic permeability values are being studied for use in accelerator dipoles. The low carbon steel is a ferromagnetic material that has a great relationship between cost and magnetic permeability. Aiming to raise the values of permeability of the material, heat treatments were done and evaluated the magnetic properties, microstructure and mechanical properties to correlate them. It was noted that the thermal annealing were the most effective, and the annealing performed with a small time threshold, which only phenomenon observed was the primary recrystallisation, was the most elevated values of magnetic permeability of the material, due to the average grain size ideal achieved. The heat treatments do not guide the magnetic domains of the material and not influence the mechanical properties of the material due to lack of carbon in the microstructure. The annealing treatments were shown to be an alternative to raising the values of the magnetic permeability of the material and facilitate the implementation of ultra low carbon steel in the dipoles of Sirius
Resumo:
The structural and magnetic properties of a Fe-based alloy before and after sintering have been analyzed. X ray diffraction measurements confirm the deformation of the magnetic particles in the compacted samples. After sintering, hysteresis energy dissipation, remanence and intrinsic coercivity differ by less than 10% as porosity changes from 15 to 7%.
Resumo:
A Monte Carlo computer simulation technique, in which a continuum system is modeled employing a discrete lattice, has been applied to the problem of recrystallization. Primary recrystallization is modeled under conditions where the degree of stored energy is varied and nucleation occurs homogeneously (without regard for position in the microstructure). The nucleation rate is chosen as site saturated. Temporal evolution of the simulated microstructures is analyzed to provide the time dependence of the recrystallized volume fraction and grain sizes. The recrystallized volume fraction shows sigmoidal variations with time. The data are approximately fit by the Johnson-Mehl-Avrami equation with the expected exponents, however significant deviations are observed for both small and large recrystallized volume fractions. Under constant rate nucleation conditions, the propensity for irregular grain shapes is decreased and the density of two sided grains increases.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most topologies used for high DC voltage/low DC voltage conversion is the Buck converter. It is obtained as a second order system with a LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core instead of air core lets design converters with smaller size. If high switching frequencies are used for obtaining high quality voltage output, the value of the auto inductance L is reduced throughout the time. Then, robust controllers are needed if the accuracy of the converter response must not be affected by auto inductance and load variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a not-toohigh switching frequency is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results are presented.
Resumo:
This paper presents the performance of an instantaneous torque control method. The simulation and experimental results illustrate the capability of Switched Reluctance Motors (SRM) being used in the motor drive industry. Based on experimental data, the advantages of this control method and its disadvantages in practical implementation were studied. The model used in the simulation is the linear magnetic model which has the 12/8 structure, the same structure as the experimental switched reluctance motor.
Resumo:
In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM 1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.