987 resultados para slope approach


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock masses are related to differential weathering of the lithologies that make up the slope. Therefore, the weathering characteristics of the intact rock are of great importance for the study of these types of slopes and their associated instability processes. The main aim of this study is to characterise the weathering properties of the different lithologies outcropping in the carbonatic Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on them, following slope excavation. To this end, 151 strata samples obtained from 11 different slopes, 5–40 years old, were studied. The lithologies were identified and their mechanical characteristics obtained using field and laboratory tests. Additionally, the slaking properties of intact rocks were determined, and a classification system proposed based on the first and fifth slake cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. Information obtained from the laboratory and the field was used to characterise the weathering behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were related to the in-situ weathering properties of rocks (i.e., the weathering profile, patterns and length, and weathering rate). The proposed relationship between laboratory test results, field data, and in-situ observations provides a useful tool for predicting the response of slopes to weathering after excavation during the preliminary stages of design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel tunable dispersion compensator that can provide pure slope compensation. The approach uses two specially designed complex fiber Bragg gratings (FBGs) with reversely varied third-order group delay curves to generate the dispersion slope. The slope can be changed by adjusting the relative wavelength positions of the two FBGs. Several design examples of such complex gratings are presented and discussed. Experimentally, we achieve a dispersion slope tuning range of +/-650ps/nm2 with >0.9nm usable bandwidth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO4**2-) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from approx. 10 to >20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO4**2- profile approx. 35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO4**2- the age of the most recent MTD is estimated to be <30 years. The mass movement was possibly related to an earthquake in 1988 (approx. 70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the landslide-prone area near the Nice international airport, southeastern France, an interdisciplinary approach is applied to develop realistic lithological/geometrical profiles and geotechnical/strength sub-seafloor models. Such models are indispensable for slope stability assessments using limit equilibrium or finite element methods. Regression analyses, based on the undrained shear strength (su) of intact gassy sediments are used to generate a sub-seafloor strength model based on 37 short dynamic and eight long static piezocone penetration tests, and laboratory experiments on one Calypso piston and 10 gravity cores. Significant strength variations were detected when comparing measurements from the shelf and the shelf break, with a significant drop in su to 5.5 kPa being interpreted as a weak zone at a depth between 6.5 and 8.5 m below seafloor (mbsf). Here, a 10% reduction of the in situ total unit weight compared to the surrounding sediments is found to coincide with coarse-grained layers that turn into a weak zone and detachment plane for former and present-day gravitational, retrogressive slide events, as seen in 2D chirp profiles. The combination of high-resolution chirp profiles and comprehensive geotechnical information allows us to compute enhanced 2D finite element slope stability analysis with undrained sediment response compared to previous 2D numerical and 3D limit equilibrium assessments. Those models suggest that significant portions (detachment planes at 20 m or even 55 mbsf) of the Quaternary delta and slope apron deposits may be mobilized. Given that factors of safety are equal or less than 1 when further considering the effect of free gas, a high risk for a landslide event of considerable size off Nice international airport is identified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonate deposits have been sampled with the remotely operated vehicle ‘MARUM-QUEST 4000 m’ from five methane seeps between 731 and 1823 m water depth along the convergent Makran continental margin, offshore Pakistan (northern Arabian Sea). Two seeps on the upper slope are located within the oxygen minimum zone (OMZ; ca. 100 to 1100 m water depth), the other sites are situated in oxygenated water below the OMZ (below 1100 m water depth). The carbonate deposits vary with regard to their spatial extent, sedimentary fabrics, and associated seep fauna: Within the OMZ, carbonates are spatially restricted and associated with microbial mats, whereas in the oxygenated zone below the OMZ extensive carbonate crusts are exposed on the seafloor with abundant metazoans (bathymodiolin mussels, tube worms, galatheid crabs). Aragonite and Mg-calcite are the dominant carbonate minerals, forming common early diagenetic microcrystalline cement and clotted to radial-fibrous cement. The δ18Ocarbonate values range from 1.3 to 4.2‰ V-PDB, indicating carbonate precipitation at ambient bottom-water temperature in shallow sediment depth. Extremely low δ13Ccarbonate values (as low − 54.6‰ V-PDB) point to anaerobic oxidation of methane (AOM) as trigger for carbonate precipitation, with biogenic methane as dominant carbon source. Prevalence of biogenic methane in the seepage gas is corroborated by δ13Cmethane values ranging from − 70.3 to − 66.7‰ V-PDB, and also by back-calculations considering δ13Cmethane values of carbonate and incorporated lipid biomarkers. These calculations (Δδ13Cmethane–carbonate, Δδ13CANME–methane, Δδ13CMOX–methane) prove to be useful to assess the carbon stable isotope composition of seeping methane if this has not been determined in the first place; such an approach represents a useful tool to reconstruct fluid composition of ancient seeps. AOM is also revealed by lipid biomarkers of anaerobic methane oxidizing archaea such as crocetane, pentamethylicosane (PMI), and sn2-hydroxyarchaeol strongly depleted in 13C (δ13C values as low as − 127‰ V-PDB). Biomarkers of sulphate-reducing bacteria are also abundant, showing slightly less negative δ13C values, but still significantly 13C-depleted (average values as low as − 101‰). Other bacterial biomarkers, such as bacteriohopanepolyols (BHPs), hopanols, and hopanoic acids are detected in most carbonates, but are particularly common in seep carbonates from the non-OMZ sites. The BHP patterns of these carbonates and their low δ13C values resemble patterns of aerobic methanotrophic bacteria. In the shallower OMZ sites, BHPs revealed much lower contents and varying compositions, most likely reflecting other sources than aerobic methanotrophic bacteria. 230Th/U carbonate ages indicate that AOM-induced carbonate precipitation at the deeper non-OMZ seeps occurred mainly during the late Pleistocene-Holocene transition, i.e. between 19 and 15 ka before present, when the global sea level was lower than today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ~ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, L_TIR/L_UV) and UV slope (β). We generalize the shape of the dust law with an empirical model, A_ λ,σ =E(B-V)k_ λ (λ / λ v)^ σ where k_λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62±0.05)log(E(B-V))+(0.26±0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z>3).