955 resultados para size-dependent mortality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

105 p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with an analysis of the Becker-Döring equations which lie at the heart of a number of descriptions of non-equilibrium phase transitions and related complex dynamical processes. The Becker-Döring theory describes growth and fragmentation in terms of stepwise addition or removal of single particles to or from clusters of similar particles and has been applied to a wide range of problems of physicochemical and biological interest within recent years. Here we consider the case where the aggregation and fragmentation rates depend exponentially on cluster size. These choices of rate coefficients at least qualitatively correspond to physically realistic molecular clustering scenarios such as occur in, for example, simulations of simple fluids. New similarity solutions for the constant monomer Becker-Döring system are identified, and shown to be generic in the case of aggregation and fragmentation rates that depend exponentially on cluster size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the electrical transport properties of Au-seeded germanium nanowires with radii ranging from 11 to 80 nm at ambient conditions. We found a non-trivial dependence of the electrical conductivity, mobility and carrier density on the radius size. In particular, two regimes were identified for large (lightly doped) and small (stronger doped) nanowires in which the charge-carrier drift is dominated by electron-phonon and ionized-impurity scattering, respectively. This goes in hand with the finding that the electrostatic properties for radii below ca. 37 nm have quasi one-dimensional character as reflected by the extracted screening lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the regeneration and seedling mortality of rare tree species are important, but scarce. The aim of this study was to investigate the annual variation in recruitment, growth and mortality of juveniles of Enterolobium glaziovii Benth., a rare tree species from the Brazilian Atlantic Rain Forest. All seedlings and juveniles around four reproductive trees were labeled and their fate was followed from 1996 to 1999. There were no annual differences in juveniles' recruitment below and beyond the parental crown, but juveniles' survival and growth were lower below than beyond of the parental tree crowns. Small individuals (< 15 cm tall) showed the greatest mortality and the lowest growth, followed by medium (from 15 to 50 cm tall) and large ones (> 50 cm tall). Large juveniles were more widely dispersed from the conspecific parental tree than were medium and small ones. This suggests that distance dependent mortality of juveniles mediated by the parental tree is an important cause of spacing shifts associated with the growth of small individuals of E. glaziovii into large ones. Widely dispersed juveniles may escape the high mortality associated with pathogens, herbivores or seed predators concentrated around adult conspecifics. The negative influence of the parental tree on its juveniles may explain the sparse distribution of its adults in the forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother’s condition and her egg production might be expected. 3. In the temperate butterfly Pararge aegeria , the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months' growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of the early life of fishes forms one of the very important aspects with respect to recruitment mechanism and proper uneterstanding of the dynamics leading to sustainance of fish populations. It should be the central theme of the fisheries biologist and managers to extract the bilogical information relevant to the proper understanding of this part of the population. A number of studies in the Mwanza gulf and Lake Victoria have emphasized the need to monitor the fishery by conducting observations of stock size, migration, catch effort data and growth of big specimen (Acere 1981, Goudsward et al 1984, Asila. Ogari 1988 and Okemwa 1984). The present paper discusses the preliminary information on the size structure, mortality and migration of juvenile Nile perch. The long term objectives of the programme is aimed at describing the size structure, growth, mortality, recruitment pattern and population dynamics of the Nile perch up to 30 cm total length in the, Mwanza Gulf.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fishing decreases the biomass of target species via reduction in the numbers and/or size of individuals. In natural systems, the strength of biological interactions, including predator-prey dynamics, are often density or size-dependent. Hence, changes in the numbers or size of key taxa may be expected to influence biological interactions but their effects do not need to be identical. Here we compare the effects of biomass reduction in populations of the exploited limpet Patella candei. Biomass removal was experimentally achieved by either removing individuals (density reduction) or by replacing large by small individuals (size reduction), while controlling for total limpet biomass in a laboratory-based experiment. At the experiment’s termination, biomass reduction led to proportional changes in area grazed. However, there was no difference whether this was achieved via changes in density or in size. Furthermore, no discernible effects of treatments were evident on different components of the algal assemblage. A field survey also revealed that P. candei biomass explained a greater proportion in variation in the area free of algae than density alone. Our results suggest that loss of biomass in populations of P. candei has quantitatively and qualitatively similar effects on algal cover regardless of whether it is caused by an equivalent (biomass) reduction in the numbers or size of individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. METHODS: Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. KEY RESULTS: Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. CONCLUSIONS: The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.