904 resultados para silver-based alloy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanoparticles were prepared from a NdFeB-based alloy using the hydrogen decrepitation process together with high-energy ball milling and tested as heating agent for magnetic hyperthermia. In the milling time range evaluated (up to 10 h), the magnetic moment per mass at H = 1.59 MA m(-1) is superior than 70 A m(2) kg(-1); however, the intrinsic coercivity might be inferior than 20 kA m(-1). The material presents both ferromagnetic and superparamagnetic particles constituted by a mixture of phases due to the incomplete disproportionation reaction of Nd2Fe14BHx during milling. Solutions prepared with deionized water and magnetic particles exposed to an AC magnetic field (H-max similar to 3.7 kA m(-1) and f = 228 kHz) exhibited 26 K <= Delta T-max <= 44 K with a maximum estimated specific absorption rate (SAR) of 225 W kg(-1). For the pure magnetic material milled for the longest period of time (10 h), the SAR was estimated as similar to 2500 W kg(-1). In vitro tests indicated that the powders have acceptable cytotoxicity over a wide range of concentration (0.1-100 mu g ml(-1)) due to the coating applied during milling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical antimicrobial agents has helped improve the survival of these patients. Silvazine (Sigma Pharmaceuticals, Melbourne, Australia) (1% silver sulphadiazine and 0.2% chlorhexidine digluconate) is used exclusively in Australasia, and there is no published study on its cytotoxicity. This study compared the relative cytotoxicity of Silvazine with 1% silver sulphadiazine (Flamazine (Smith & Nephew Healthcare, Hull, UK)) and a silver-based dressing (Acticoat (Smith & Nephew Healthcare, Hull, UK)). METHODS: Dressings were applied to the centre of culture plates that were then seeded with keratinocytes at an estimated 25% confluence. The plates were incubated for 72 h and culture medium and dressings then removed. Toluidine blue was added to stain the remaining keratinocytes. Following removal of the dye, the plates were photographed under standard conditions and these digital images were analysed using image analysis software. Data was analysed using Student's t-test. RESULTS: In the present study, Silvazine is the most cytotoxic agent. Seventy-two hour exposure to Silvazine in the present study results in almost no keratinocyte survival at all and a highly statistically significant reduction in cell survival relative to control, Acticoat and Flamazine (P<0.001, P<0.01, P<0.01, respectively). Flamazine is associated with a statistically significant reduction in cell numbers relative to control (P<0.05), but is much less cytotoxic than Silvazine (P<0.005). CONCLUSION: In this in-vitro study comparing Acticoat, Silvazine and Flamazine, Silvazine shows an increased cytotoxic effect, relative to control, Flamazine and Acticoat. An in-vivo study is required to determine whether this effect is carried into the clinical setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to develop heterogeneous visible light active photocatalysts using AgBr and Ag3PO4 using CeO2 nanoflakes as an efficient substrate. Ascorbic acid was employed as a fuel to synthesize fine ceria nanoflakes by a facile solution combustion process. AgBr and Ag3PO4 were decorated on ceria to prepare AgBr/Ag3PO4/ceria nanocomposites. The structure of the composite was determined by X-ray diffraction analysis. Novel flakelike morphology was revealed using electron microscopy techniques. The nanocomposites exhibit excellent photocatalytic activity under visible light compared to pristine ceria nanoparticles. The nanocomposite catalyst particles degraded both anionic and cationic dyes. It also exhibited efficient antimicrobial activity under visible light. The AgBr/Ag3PO4/ceria nanocomposite was characterized using X-ray diffraction analysis, diffuse reflectance spectroscopy, electron microscopy, BET surface area analysis, and X-ray photoelectron spectroscopy, and the reasons for enhanced photocatalytic activity were elucidated. The presence of silver based semiconductors on ceria has shown to decrease charge recombination through photoluminescence analysis that attributed for enhanced photocatalytic activity. The AgBr/Ag3PO4/ceria nanocomposite has shown a stable performance after many repeated cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文设计并制备了具有优良的强韧性能和高温性能的激光熔覆涂层。利用 SEM、TEMEY X-射线衍射仪等研究了涂层的化学成分、宏微观结构及其转变机制,同时研究了涂层强韧性及耐高温磨损性能及其影响机制。对激光溶覆涂层进行了合金化、微观组织、强韧化机制、加工工艺性能设计。合金系为 Fe-Cr-C-W-Ni,成分配比(质量分数),Fe:52-60%, Cr:24-30%, C:5-6%, W:4.5-7.5%, Ni:5-6%。强化机制为两相强化、亚结构强化及固溶强化,其中强化相为合金碳化物,基体相为合金元素过饱和度极高的韧性奥氏体。亚共晶及过共晶组织的领先凝固相分别为奥氏体及 M_7C_3 合金碳化物,两相共晶组织均为韧性相奥氏体和强化相 M_7C_3 合金碳化物。加工工艺控制领先凝固相的结构、组织演化及力学性能。熔覆组织在高温时效过程中形成大量新的碳化物。在过饱和奥氏体内部,可弥散析出细小的 Mc、M_2C 及 M_(23)C_6碳化物;在奥氏体与 M_7C_3 相界面,亚稳相M_7C_3发生原位转变,形成 M_(23)C_6 及 M_6C碳化物。激光熔覆合金具有较高的综合力学性能,熔覆涂层有高的显微硬度、优良的抗回火稳定性、显著的二次硬化特征、优异的抗磨粒磨损和冲击磨损性能。Fe-Cr-C-W-Ni 激光熔覆合金具有较低的裂纹形成倾向和良好的表面成形性能,这与奥氏体较高的高温韧塑性及合金的低熔点共晶特征密切相关;实验及理论分析表明,通过调整合金成分、激光工艺参数和后续热处理工艺,可获得具有不同强韧性能的熔覆涂层。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

银催化剂是工业上较为重要的催化剂,它不仅大量地使用在乙烯环氧化,甲醇脱氢反应中,还在异丙醇氧化脱氢制丙酮,乙醇脱氢制乙醛,乙二醇氧化制乙二醛,烷基胺氧化制睛类化合物等工业过程中广为应用。由于银催化剂具有如此重要的工业应用价值,所以银催化剂一百多年来一直是催化领域的研究重点。银催化剂的特异催化行为得益于银元素较为特殊的电子结构以及氧物种在银催化上的独特催化行为。银催化剂表面既存在导致非选择氧化反应的氧物种(a氧),也存在导致选择氧化反应的氧物种(Y氧),这两种氧物种在催化剂上的状态与反应气氛及催化剂结构密切相关。一氧化碳氧化反应在环境保护、能源利用(燃料电池)、安全防护(火场、煤矿)有较为重要的用途;甲酸甲醋是近年新兴的较为重要的碳一化学中间体,它可以广泛应用于有机合成反应中,也可以作为安全的合成气载体;醇类选择氧化制备相应的醛酮化合物也是有机合成工业的重要反应之一;甲苯气相氧化制备苯甲醛是研究烃类选择氧化较为重要的模型反应,在工业上存在潜在的应用价值。本论文以上述的四个反应为探针反应研究了银基催化剂的催化行为,得到以下的结果:1.以烷基胺为模板剂制备了过渡金属离子掺杂的介孔分子筛,通过模板剂-离子交换技术制备了含银基复合氧化物的介孔分子筛催化剂。该系列催化剂对一氧化碳氧化反应有较好的活性。同时研究了金属盐的种类及掺杂量对介孔分子筛结构的影响,发现金属离子的掺杂会破坏介孔分子筛的结构的有序性,随着掺杂量的增大,介孔分子筛的结构的有序性变差;金属盐的阴离子对介孔分子筛的结构的有序性亦有影响。2.较为系统研究了银基催化剂上由甲醇制备甲酸甲酷的催化行为,发现银基催化剂是一个选择性较高的催化体系。分立测试了不同的氧物种对甲醇反应的影响,提出了a氧与Y氧协同作用的机理,为解决甲醇脱氢反应机理争端提供了有价值的信息。3.系统研究了低级醇在金属银催化剂的脱氢反应,分立测试了不同的氧物种对甲醇、乙醇反应的影响,发现低于550K时不同的氧物种对乙醇的反应性能有显著的差异,认为低温(<550K)条件下,醇类在金属银催化剂上发生的是氧化脱氢历程。通过借鉴均相醇类氧化脱氢反应研究所取得的成果,试图从本质上解释银是醇类气相氧化脱氢最好的催化剂的原因,即在过渡金属中,金属银上的氧物种的碱性是最强的,氧的再生能力也是很强的。4.在甲苯的选择氧化研究中发现在高温(600℃)、纯氧、甲醇参与的条件下,Pt一Ag催化剂对苯甲醛的收率最好(-6%),提出了分子氧参与生成含氧自由基中间产物、醇类淬灭自由基态中间产物的反应历程,与传统甲苯氧化所经历的Mars-Krevelen机理有差别,为烃类的选择氧化提供了新的信息。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructures and mechanical properties of Mg-6Zn-5Al-4Gd-1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg-6Zn-5Al-4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ti-based icosahedral quasicrystalline phase (I-phase) exhibited excellent hydrogen storage property for special structure. Unfortunately, the application as the negative electrode material of the nickel-metal hydride batteries was limited due to the poor electrochemical kinetics. Meanwhile, rare-earth element was beneficial to the electrochemical properties of Ti, Zr-based alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deactivation of a silver-based hydrocarbon selective catalytic reduction catalyst by SOx and the subsequent regeneration under various operating conditions has been investigated. Using a sulfur trap based on a silica-supported catalyst it was found that, for a Ag/SiO2 + Ag/Al2O3 combination, the negative effect of SO2 on the n-octane-SCR reaction can be eliminated under normal operating conditions. The trap can be regenerated by hydrogen at low temperatures or at higher temperatures using a hydrocarbon reductant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium alloys, alloys, especially beta-type alloys containing beta-stabilizing elements, constitute a highly versatile category of metallic materials that have been under constant development for application in orthopedics and dentistry. This type of alloy generally presents a high mechanical strength-to-weight ratio, excellent corrosion resistance and low elastic modulus. The purpose of this study is to evaluate the cytotoxicity and adhesion of fibroblast cells on titanium alloy substrates containing Nb, Ta, Zr, Cu, Sn and Mo alloying elements. Cells cultured on polystyrene were used as controls. In vitro results with Vero cells demonstrated that the tested materials, except Cu-based alloy, presented high viability in short-term testing. Adhesion of cells cultured on disks showed no differences between the materials and reference except for the Ti-Cu alloy, which showed reduced adhesion attributed to poor metabolic activity. Titanium alloys with the addition of Nb, Ta, Zr, Sn and Mo elements show a promising potential for biomedical applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, Mg-Ni-based metastable alloys have been attracting attention due to their large hydrogen sorption capacities, low weight, low cost, and high availability. Despite the large discharge capacity and high activity of these alloys, the accelerated degradation of the discharge capacity after only few cycles of charge and discharge is the main shortcoming against their commercial use in batteries. The addition of alloying elements showed to be an effective way of improving the electrode performance of Mg-Ni-based alloys. In the present work, the effect of Ti and Pt alloying elements on the structure and electrode performance of a binary Mg-Ni alloy was investigated. The XRD and HRTEM revealed that all the investigated alloy compositions had multi-phase nanostructures, with crystallite size in the range of 6 nm. Moreover, the investigated alloying elements demonstrated remarkable improvements of both maximum discharge capacity and cycling life. Simultaneous addition of Ti and Pd demonstrated a synergetic effect on the electrochemical properties of the alloy electrodes. Among the investigated alloys, the best electrochemical performance was obtained for the Mg(51)Ti(4)Ni(43)Pt(2) composition (in at.%), which achieved 448 mAh g(-1) of maximum discharge capacity and retained almost 66% of this capacity after 10 cycles. In contrast, the binary Mg(55)Ni(45) alloy achieved only 248 mAh g(-1) and retained 11% of this capacity after 10 cycles. (C) 2010 Elsevier By. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)