988 resultados para silty clay soil
Resumo:
Alluvial paleosoil horizons from the 3 to 4 m high banks of the Paraná River were used to reconstruct the palaeoenvironmental history and palaeohydrological regime of the river. The bank consists of a Middle to Late Holocene sequence of sandy to silty clay layers of overbank deposits. The paleosoil horizon is located to a depth of 1.95 m from the top of the bank and is recognized as a guide horizon throughout the floodplain of the Upper Paraná River floodplain. Analyses of organic matter (δ13C and humic/fulvic acids), palynology (pollen and charcoal fragments), magnetic susceptibility, micromorphology, x-ray diffraction and 14C dating were conducted for samples from two representative profiles of the study area. Two phases were characterized in the history of the river: 1) An older phase, of stability in fluvial hydrology (stasis) with low frequency of floods, which produced conditions for soil development (14C 1700 ± 70 yr. BP). At this period, the predominance of herbaceous vegetation (determinated by pollen and δ13C analyses) suggests a climate less humid than the present one, and 2) A second phase, when climate changed to the present conditions of humidity (annual rain fall of 1600 rum) and characterized by the predominance of C3 plants. Under this new hydrological regime, the river developed an agradational floodplain, with a depositional sedimentary rate of 1.2 mm.y-1. © 2006 Gebrüder Borntraeger.
Resumo:
Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
The stillage, which is a liquid residue from the distillation of the sugarcane ethanolic fermentation, contains organic matter and can be a big source of pollution when it is discarded in the wrong way. Its application as fertilizer has been extended, which is reason to cause concerns regarding the environment. The aim of this work was to evaluate and quantify the biodegradation of stillage in sandy and clay soils, besides verifying the efficiency of the Embiotic Line®inoculum as an accelerator of the biodegradation. Bartha and Pramer respirometric technique was used to determine the production of CO2 during the 50 days of the biodegradation process, and the quantification of the initial and final microorganisms was also conducted. Results were analyzed using the Friedman statistical test. Clay soils were significantly better on stillage decomposition when compared to sandy soils (p=0.0153). Clay soils presented greater efficiency in stillage biodegradation, with higher field capacity, better water, organic matter and microbial retention. Regarding the use of the embiotic line, the experiment has shown this product does not interfere positively in the stillage biodegradation for both soils, possibly needing adjustments in its composition.
Resumo:
Relict sand wedges are ubiquitous in southern Patagonia. At six sites we conducted detailed investigations of stratigraphy, soils, and wedge frequency and characteristics. Some sections contain four or more buried horizons with casts. The cryogenic features are dominantly relict sand wedges with an average depth, maximum apparent width, minimum apparent width, and H/W of 78, 39, 3.8, and 2.9 cm, respectively. The host materials are fine-textured (silt loam, silty clay loam, clay loam) till and the infillings are aeolian sand. The soils are primarily Calciargidic Argixerolls that bear a legacy of climate change. Whereas the sand wedges formed during very cold (-4 to -8 °C or colder) and dry (ca. <=100 mm precipitation/yr) glacial periods, petrocalcic horizons from calcium carbonate contributed by dustfall formed during warmer (7 °C or warmer) and moister (>= 250 mm/yr) interglacial periods. The paleo-argillic (Bt) horizons reflect unusually moist interglacial events where the mean annual precipitation may have been 400 mm/yr. Permafrost was nearly continuous in southern Patagonia during the Illinoian glacial stage (ca. 200 ka), the early to mid-Pleistocene (ca. 800-500 ka), and on two occasions during the early Pleistocene (ca. 1.0-1.1 Ma).
Resumo:
Edaphic factors affect the quality of onions (Allium cepa). Two experiments were carried out in the field and glasshouse to investigate the effects of N (field: 0, 120 kg ha(-1); glasshouse: 0, 108 kg ha(-1)), S (field: 0, 20 kg ha(-1); glasshouse: 0, 4.35 kg ha(-1)) and soil type (clay, sandy loam) on onion quality. A conducting polymer sensor electronic nose (E-nose) was used to classify onion headspace volatiles. Relative changes in the E-nose sensor resistance ratio (%dR/R) were reduced following N and S fertilisation. A 2D Principal Component Analysis (PCA) of the E-nose data sets accounted for c. 100% of the variations in onion headspace volatiles in both experiments. For the field experiment, E-nose data set clusters for headspace volatiles for no N-added onions overlapped (D-2 = 1.0) irrespective of S treatment. Headspace volatiles of N-fertilised onions for the glasshouse sandy loam also overlapped (D-2 = 1.1) irrespective of S treatment as compared with distinct separations among clusters for the clay soil. N fertilisation significantly (P < 0.01) reduced onion bulb pyruvic acid concentration (flavour) in both experiments. S fertilisation increased pyruvic acid concentration significantly (P < 0.01) in the glasshouse experiment, especially for the clay soil, but had no effect on pyruvic acid concentration in the field. N and S fertilisation significantly (P < 0.01) increased lachrymatory potency (pungency), but reduced total soluble solids (TSS) content in the field experiment. In the glasshouse experiment, N and S had no effect on TSS. TSS content was increased on the clay by 1.2-fold as compared with the sandy loam. Onion tissue N:water-soluble SO42- ratios of between five and eight were associated with greater %dR/R and pyruvic acid concentration values. N did not affect inner bulb tissue microbial load. In contrast, S fertilisation reduced inner bulb tissue microbial load by 80% in the field experiment and between 27% (sandy loam) and 92% (clay) in the glasshouse experiment. Overall, onion bulb quality discriminated by the E-nose responded to N, S and soil type treatments, and reflected their interactions. However, the conventional analytical and sensory measures of onion quality did not correlate with %dR/R.
Resumo:
Pesticides leaching through a soil profile will be exposed to changing environmental sorption and desorption conditions as different horizons with distinct physical and chemical properties are encountered. Soil cores were taken from a clay soil profile and samples taken from 0.0 to 0.3 m (surface), 1.0-1.3 m (mid) and 2.7-3.0 m (deep) and treated with the chloroacetanilide herbicide, acetochlor. Freundlich isotherms revealed that sorption and desorption behaviour varied with each depth sampled. As soil depth increased, the extent and strength of sorption decreased, indicating that the potential for leaching was increased in the subsoils compared with the surface soil. Hysteresis was evident at each of the three depths sampled, although no significant correlations between soil properties and the hysteresis coefficients were evident. Desorption studies using soil fractions with diameters of > 2000, 250-2000, 53-250, 20-53, 2-20, 0-2 and 0-1 mum separated from each of the three soil depths showed that differential desorption kinetics occurred and that the retention of acetochlor significantly correlated (R-2 = 0.998) with organic matter content. A greater understanding of the influence of soil components on the overall sorption and desorption potential of surface and subsurface soils is required to allow accurate prediction of acetochlor retention in the soil. In addition, it is likely that the proportion of each size fraction in a soil horizon would influence acetochlor bioavailability and movement to groundwater.
Resumo:
Pesticides in soil are subject to a number of processes that result in transformation and biodegradation, sorption to and desorption from soil components, and diffusion and leaching. Pesticides leaching through a soil profile will be exposed to changing environmental conditions as different horizons with distinct physical, chemical and biological properties are encountered. The many ways in which soil properties influence pesticide retention and degradation need to be addressed to allow accurate predictions of environmental fate and the potential for groundwater pollution. Degradation and sorption processes were investigated in a long-term (100 days) study of the chloroacetanilide herbicide, acetochlor. Soil cores were collected from a clay soil profile and samples taken from 0-30cm (surface), 1.0-1.3m (mid) and 2.7-3.0m (deep) and treated with acetochlor (2.5, 1.25, 0.67 mu g acetochlor g(-1) dry wt soil, respectively). In sterile and non-sterile conditions, acetochlor concentration in the aqueous phase declined rapidly from the surface and subsoil layers, predominantly through nonextractable residue (NER) formation on soil surfaces, but also through biodegradation and biotic transformation. Abiotic transformation was also evident in the sterile soils. Several metabolites were produced, including acetochlor-ethane sulphonic acid and acetochlor-oxanilic acid. Transformation was principally microbial in origin, as shown by the differences between non-sterile and sterile soils. NER formation increased rapidly over the first 21 days in all soils and was mainly associated with the macroaggregate (> 2000 mu m diameter) size fractions. It is likely that acetochlor is incorporated into the macroaggregates through oxidative coupling, as humification of particulate organic matter progresses. The dissipation (ie total loss of acetochlor) half-life values were 9.3 (surface), 12.3 (mid) and 12.6 days (deep) in the non-sterile soils, compared with 20.9 [surface], 23.5 [mid], and 24 days [deep] in the sterile soils, demonstrating the importance of microbially driven processes in the rapid dissipation of acetochlor in soil.
Resumo:
The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge ( PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay ( Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3- accumulation in the field. Piggery pond sludge was applied as-collected ( wet PPS) and following stockpiling to dry ( stockpiled PPS). Soil NO3- levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3- in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum ( Sorghum bicolor) and wheat ( Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% ( range 12 - 47%) of total N from the wet PPS and 19% ( range 0 - 50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop ( 1998 barley, Hordeum vulgare) suggests that leaching of NO3- could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3- in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N ( 19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil pro. le NO3- were used in combination (R-2 = 0.49).
Resumo:
This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Gunther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3amonths and dehydrating conditions for the last 3amonths of the 6-month aestivation period, and cocoons were not formed until after 3amonths of aestivation. After 6amonths, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than -400akPa, but lost water when placed on sand with a water potential of -1000akPa.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords