987 resultados para silicoaluminophosphate molecular sieve
Resumo:
The hetero atom substituted aluminophosphate molecular sieves Me-VPI-5(Me = Mgt Ti, Sn, Si) were synthesized hydrothermally. Rare earth ions are originally doped into these microporous materials by aqueous solution ion exchange procedures. The phase transitions of the microporous materials are investigated by high-temperature and high-pressure experimental techniques. The influence of the phase transitions on the rare earth ions' spectral structures is discussed, With the increase of temperature, Eu(II)Mg-VPI-5 is converted into Eu(II)Mg-AIPO(4)-8, then into tridymite phase. The pressure has a notable influence on Eu(II) ion's spectral structures. The spectral structures have changed regularly with the increase of pressure.
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
Nitrogen adsorption at 77 K is the current standard means for pore size determination of adsorbent materials. However, nitrogen adsorption reaches limitations when dealing with materials such as molecular sieving carbon with a high degree of ultramicroporosity. In this investigation, methane and carbon dioxide adsorption is explored as a possible alternative to the standard nitrogen probe. Methane and carbon dioxide adsorption equilibria and kinetics are measured in a commercially derived carbon molecular sieve over a range of temperatures. The pore size distribution is determined from the adsorption equilibrium, and the kinetics of adsorption is shown to be Fickian for carbon dioxide and non-Fickian for methane. The non-Fickian response is attributed to transport resistance at the pore mouth experienced by the methane molecules but not by the carbon dioxide molecules. Additionally, the change in the rate of adsorption with loading is characterized by the Darken relation in the case of carbon dioxide diffusion but is greater than that predicted by the Darken relation for methane transport. Furthermore, the proposition of inkbottle-shaped micropores in molecular sieving carbon is supported by the determination of the activation energy for the transport of methane and subsequent sizing of the pore-mouth barrier by molecular potential calculations.
Resumo:
A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS.(1.2) The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
Vertically-aligned carbon nanotube (VACNT) membranes show very high permeation fluxes due to the inherent smooth and frictionless nature of the interior of the nanotubes. However, the hydrogen selectivities are all in the Knudsen range and are quite low. In this study we grew molecular sieve zeolite imidazolate frameworks (ZIFs) via secondary seeded growth on the VACNT membranes as a gas selective layer. The ZIF layer has a thickness of 5–6 μm and shows good contact with the VACNT membrane surface. The VACNT supported ZIF membrane shows much higher H2 selectivity than Ar (7.0); O2 (13.6); N2 (15.1) and CH4 (9.8). We conclude that tailoring metal–organic frameworks on the membrane surface can be an effective route to improve the gas separation performance of the VACNT membrane.
Effect of the method of preparation and pretreatment on the texture of alumina and related catalysts
Resumo:
The effect of the method of preparation and pretreatment on catalyst texture was investigated in the case of alumina, silica-alumina, 10 × molecular sieve and thoria catalysts. All the catalysts were characterised with respect to their specific surface area, surface acidity, pore size distribution and pore volume. The above properties were found to reflect the textural changes that might have been undergone by the catalyst surface as a result of the method of preparation and pretreatment. The method of preparation was found to influence markedly the acidity of the surface and to a lesser extent the surface area and pore size distribution. Acid-treatment was found to increase selectively the acidity of the catalyst while heat-treatment was found to decrease proportionally the acidity as well as surface area of the catalyst.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.
Resumo:
A systematic investigation of monatomic spherical sorbates in the supercages of zeolites Y and A by molecular dynamics technique is presented. Rates of intercage diffusion, rates of cage visits, and the diffusion coefficients have been calculated as a function of the sorbate-zeolite interaction strength. These properties exhibit markedly different dependences on interaction strength for the two zeolites. The observed behavior is shown to be a consequence of the two principal mechanisms of intercage diffusion and the energetic barrier associated with them. The diffusion coefficient and other properties associated with intercage diffusion are found to be directly proportional to the reciprocal of the square of the sorbate diameter when the sorbate diameter is significantly smaller than the window diameter. As the sorbate diameter increases, a peak is observed in all the transport properties investigated including the diffusion coefficient. We call this surprising effect as the ring or levitation effect and it explains several anomalous results reported in the literature and suggests a breakdown of the geometrical criterion for diffusion of sorbates. It shows that under certain conditions nongeometrical factors play a major role and geometrical factors become secondary in the determination of the molecular sieve property. A generalized parameter has been proposed which suggests conditions under which one can expect the ring or levitation effect in any porous medium. Inverse size selectivity becomes operative under these conditions.
Resumo:
The esterification of stearic acid with p-cresol using modified Indian bentonite clay catalysts has been reported. The reaction was studied over exchanged clays, acid activated clays, exchanged acid activated clays, aluminium pillared clay, aluminium pillared acid activated clay, molecular sieve Al-MCM-41, zeolite H beta, ZrO2, S-ZrO2, p-TSA, montmorillonite K10, and montmorillonite KSF in o-xylene for 6 h. The catalysts were characterized by X-ray diffraction and surface area measurements. The acidity was determined by n-butylamine back-titration method and DRIFTS after pyridine adsorption. Acid activated Indian bentonite (AAIB) was found to be a better catalyst compared to other catalysts in the esterification of stearic acid with p-cresol.
Resumo:
The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup, and is now being considered as an intermediate step in the possible route of biomass conversion into fuels and chemicals. Recently, it has been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta structure and containing framework Sn4+ (Sn-Beta) is able to isomerize glucose into fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center (framework Sn4+), isomerizes into the acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from C2 to C1. Extraframework tin oxides located within hydrophobic channels of the molecular sieve that exclude liquid water can also isomerize glucose to fructose in aqueous media, but do so through a base-catalyzed proton abstraction mechanism. Extraframework tin oxide particles located at the external surface of the molecular sieve crystals or on amorphous silica supports are not active in aqueous media but are able to perform the isomerization in methanol by a base-catalyzed proton abstraction mechanism. Post-synthetic exchange of Na+ with Sn-Beta alters the glucose reaction pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na+ remains exchanged onto silanol groups during reaction in methanol solvent, leading to a near complete shift in selectivity towards glucose epimerization to mannose. In contrast, decationation occurs during reaction in aqueous solutions and gradually increases the reaction selectivity to isomerization at the expense of epimerization. Decationation and concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous reaction solution. Thus, framework tin sites with a proximal silanol group are the active sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, while these sites with Na-exchanged silanol group are the active sites for the 1, 2 intramolecular carbon shift in epimerization of glucose to mannose.
Resumo:
A crescente demanda por lubrificantes obtidos a partir de fontes renováveis vem incentivando a pesquisa por alternativas sustentáveis. O objetivo principal deste trabalho foi investigar a síntese de sebacato de dioctila a partir da reação de esterificação entre o ácido sebácico e o 1-octanol empregando biocatalisadores e catalisador químico convencional (ácido sulfúrico). Alguns parâmetros reacionais foram estudados: tipo de lipase comercial imobilizada (Novozym 435, Lipozyme RM IM e Lipozyme TL IM), temperatura, razão molar ácido/álcool, concentração de lipase, métodos de remoção da água do meio reacional. A reutilização da lipase Novozym 435 também foi avaliada. A conversão da reação foi determinada por cromatografia em fase gasosa. A lipase Novozym 435 apresentou os melhores resultados: 100% de conversão de ácido sebácico quando foi empregada razão molar ácido:álcool de 1:5 e 5% m/m de lipase, após 150 minutos de reação a 100C. O emprego de peneira molecular e vácuo não aumentou a conversão do ácido sebácico. O produto final foi caracterizado com relação à viscosidade, ao índice de viscosidade, ao ponto de fulgor, ao ponto de fluidez e ao índice de neutralização, e apresentou comportamento semelhante a um óleo naftênico
Resumo:
Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.