998 resultados para sieve printing method
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Senate document no. 358.
Resumo:
Thesis (PH.D.)--University of Virginia, 1916.
Resumo:
We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.
Resumo:
Compared to packings trays are more cost effective column internals because they create a large interfacial area for mass transfer by the interaction of the vapour on the liquid. The tray supports a mass of froth or spray which on most trays (including the most widely used sieve trays) is not in any way controlled. The two important results of the gas/liquid interaction are the tray efficiency and the tray throughput or capacity. After many years of practical experience, both may be predicted by empirical correlations, despite the lack of understanding. It is known that the tray efficiency is in part determined by the liquid flow pattern and the throughput by the liquid froth height which in turn depends on the liquid hold-up and vapour velocity. This thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flow rates similar to those used in commercial scale distillation, was observed experimentally by direct observation; by water-cooling, to simulate mass transfer; use of potassium permanganate dye to observe areas of longer residence time; and by height of clear liquid measurements across the tray and in the downcomer using manometers. This work presents experiments designed to evaluate flow control devices proposed to improve the gas liquid interaction and hence improve the tray efficiency and throughput. These are (a) the use of intermediate weirs to redirect liquid to the sides of the tray so as to remove slow moving/stagnant liquid and (b) the use of vapour-directing slots designed to use the vapour to cause liquid to be directed towards the outlet weir thus reducing the liquid hold-up at a given rate i.e. increased throughput. This method also has the advantage of removing slow moving/stagnant liquid. In the experiments using intermediate weirs, which were placed in the centre of the tray. it was found that in general the effect of an intermediate weir depends on the depth of liquid downstream of the weir. If the weir is deeper than the downstream depth it will cause the upstream liquid to be deeper than the downstream liquid. If the weir is not as deep as deep as the downstream depth it may have little or no effect on the upstream depth. An intermediate weir placed at an angle to the direction of flow of liquid increases the liquid towards the sides of the tray without causing an increase in liquid hold-up/ froth height. The maximum proportion of liquid caused to flow sideways by the weir is between 5% and 10%. Experimental work using vapour-directing slots on a rectangular sieve tray has shown that the horizontal momentum that is imparted to the liquid is dependent upon the size of the slot. If too much momentum is transferred to the liquid it causes hydraulic jumps to occur at the mouth of the slot coupled with liquid being entrained, The use of slots also helps to eliminate the hydraulic gradient across sieve trays and provides a more uniform froth height on the tray. By comparing the results obtained of the tray and point efficiencies, it is shown that a slotted tray reduces both values by approximately 10%. This reduction is due to the fact that with a slotted tray the liquid has a reduced residence time Ion the tray coupled also with the fact that large size bubbles are passing through the slots. The effectiveness of using vapour-directing slots on a full circular tray was investigated by using dye to completely colour the biphase. The removal of the dye by clear liquid entering the tray was monitored using an overhead camera. Results obtained show that the slots are successful in their aim of reducing slow moving liquid from the sides of the tray, The net effect of this is an increase in tray efficiency. Measurements of slot vapour-velocity found it to be approximately equal to the hole velocity.
Resumo:
The thesis describes experimental work on the possibility of using deflection baffles in conventional distillation trays as flow straightening devices, with the view of enhancing tray efficiency. The mode of operation is based on deflecting part of the liquid momentum from the centre of the tray to the segment regions in order to drive stagnating liquid at the edges forward. The first part of the work was a detailed investigation into the two-phase flow patterns produced on a conventional sieve tray having 1 mm hole size perforations. The data provide a check on some earlier work and extend the range of the existing databank, particularly to conditions more typical of industrial operation. A critical survey of data collected on trays with different hole sizes (Hine, 1990; Chambers, 1993; Fenwick, 1996; this work) showed that the hole diameter has a significant influence on the flow regime, the size of the stagnant regions and the hydraulic and mass transfer performance. Five modified tray topologies were created with different configurations of baffles and tested extensively in the 2.44 m diameter air-water pilot distillation simulator for their efficacy in achieving uniform flow across the tray and for their impact on tray loading capacity and mass transfer efficiency. Special attention was given to the calibration of the over 100 temperature probes used in measuring the water temperature across the tray on which the heat and mass transfer analogy is based. In addition to normal tray capacity experiments, higher weir load experiments were conducted using a 'half-tray' mode in order to extend the range of data to conditions more typical of industrial operation. The modified trays show superior flow characteristics compared to the conventional tray in terms of the ability to replenish the zones of exceptionally low temperatures and high residence times at the edges of the tray, to lower the bulk liquid gradient and to achieve a more uniform flow across the tray. These superior flow abilities, however, tend to diminish with increasing weir load because of the increasing tendency for the liquid to jump over the barriers instead of flowing over them. The modified tray topologies showed no tendency to cause undue limitation to tray loading capacity. Although the improvement in the efficiency of a single tray over that of the conventional tray was moderate and in some cases marginal, the multiplier effect in a multiple tray column situation would be significant (Porter et al., 1972). These results are in good agreement with an associated CFD studies (Fischer, 1999) carried out by partners in the Advanced Studies in Distillation consortium. It is concluded that deflection baffles can be used in a conventional distillation sieve tray to achieve better liquid flow distribution and obtain enhanced mass transfer efficiency, without undermining the tray loading capacity. Unlike any other controlled-flow tray whose mechanical complexity impose stringent manufacturing and installation tolerances, the baffled-tray models are simple to design, manufacture and install and thus provide an economic method of retrofitting badly performing sieve trays both in terms of downtime and fabrication. NOTE APPENDICES 2-5 ARE ON A SEPARATE FLOPPY DISK ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
The literature relating to sieve plate liquid extraction columns and relevant hydrodynamic phenomena have been surveyed. Mass transfer characteristics during drop formation, rise and coalescence, and related models were also reviewed. Important design parameters i.e. flooding, dispersed phase hold-up, drop size distribution, mean drop size, coalescence/flocculation zone height beneath a plate and jetting phenomena were investigated under non-mass transfer and mass transfer conditions in a 0.45m diameter, 2.3m high sieve plate column. This column had provision for four different plate designs, and variable plate spacing and downcomer heights, and the system used was Clairsol `350' (dispersed) - acetone - deionised water (continuous) with either direction of mass transfer. Drop size distributions were best described by the functions proposed by Gal-or, and then Mugele-Evans. Using data from this study and the literature, correlations were developed for dispersed phase hold-up, mean drop size in the preferred jetting regime and in the non-jetting regime, and coalescence zone height. A method to calculate the theoretical overall mass transfer coefficient allowing for the range of drop sizes encountered in the column gave the best fit to experimental data. This applied the drop size distribution diagram to estimate the volume percentage of stagnant, circulating and oscillating drops in the drop population. The overall coefficient Kcal was then calculated as the fractional sum of the predicted individual single drop coefficients and their proportion in the drop population. In a comparison between the experimental and calculated overall mass transfer coefficients for cases in which all the drops were in the oscillating regime (i.e. 6.35mm hole size plate), and for transfer from the dispersed(d) to continuous(c) phase, the film coefficient kd predicted from the Rose-Kintner correlation together with kc from that of Garner-Tayeban gave the best representation. Droplets from the 3.175mm hole size plate, were of a size to be mainly circulating and oscillating; a combination of kd from the Kronig-Brink (circulating) and Rose-Kintner (oscillating) correlations with the respective kc gave the best agreement. The optimum operating conditions for the SPC were identified and a procedure proposed for design from basic single drop data.
Resumo:
The objective of Total Productive Maintenance (TPM) is to maximise plant and equipment effectiveness, to create a sense of ownership for operators, and promote continuous improvement through small group activities involving production, engineering and maintenance personnel. This paper describes and analyses a case study of TPM implementation at a newspaper printing house in Singapore. However, rather than adopting more conventional implementation methods such as employing consultants or through a project using external training, a unique approach was adopted based on Action Research using a spiral of cycles of planning, acting observing and reflecting. An Action Research team of company personnel was specially formed to undertake the necessary fieldwork. The team subsequently assisted with administering the resulting action plan. The main sources of maintenance and operational data were from interviews with shop floor workers, participative observation and reviews conducted with members of the team. Content analysis using appropriate statistical techniques was used to test the significance of changes in performance between the start and completion of the TPM programme. The paper identifies the characteristics associated with the Action Research method when used to implement TPM and discusses the applicability of the approach in related industries and processes.
Resumo:
Bone disorders have severe impact on body functions and quality life, and no satisfying therapies exist yet. The current models for bone disease study are scarcely predictive and the options existing for therapy fail for complex systems. To mimic and/or restore bone, 3D printing/bioprinting allows the creation of 3D structures with different materials compositions, properties, and designs. In this study, 3D printing/bioprinting has been explored for (i) 3D in vitro tumor models and (ii) regenerative medicine. Tumor models have been developed by investigating different bioinks (i.e., alginate, modified gelatin) enriched by hydroxyapatite nanoparticles to increase printing fidelity and increase biomimicry level, thus mimicking the organic and inorganic phase of bone. High Saos-2 cell viability was obtained, and the promotion of spheroids clusters as occurring in vivo was observed. To develop new syntethic bone grafts, two approaches have been explored. In the first, novel magnesium-phosphate scaffolds have been investigated by extrusion-based 3D printing for spinal fusion. 3D printing process and parameters have been optimized to obtain custom-shaped structures, with competent mechanical properties. The 3D printed structures have been combined to alginate porous structures created by a novel ice-templating technique, to be loaded by antibiotic drug to address infection prevention. Promising results in terms of planktonic growth inhibition was obtained. In the second strategy, marine waste precursors have been considered for the conversion in biogenic HA by using a mild-wet conversion method with different parameters. The HA/carbonate ratio conversion efficacy was analysed for each precursor (by FTIR and SEM), and the best conditions were combined to alginate to develop a composite structure. The composite paste was successfully employed in custom-modified 3D printer for the obtainment of 3D printed stable scaffolds. In conclusion, the osteomimetic materials developed in this study for bone models and synthetic grafts are promising in bone field.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.