922 resultados para shoulder motor control
Resumo:
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Resumo:
The well-known degrees of freedom problem originally introduced by Nikolai Bernstein (1967) results from the high abundance of degrees of freedom in the musculoskeletal system. Such abundance in motor control have two sides: i) because it is unlikely that the Central Nervous System controls each degree of freedom independently, the complexity of the control needs to be reduced, and ii) because there are many options to perform a movement, a repetition of a given movement is never the same. It leads to two main topics in motor control and biomechanics: motor coordination and motor variability. The present thesis aimed to understand how motor systems behave and adapt under specific conditions. This thesis comprises three studies that focused on three topics of major interest in the field of sports sciences and medicine: expertise, injury risk and fatigue. The first study (expertise) has focused on the muscle coordination topic to further investigate the effect of expertise on the muscle synergistic organization, which ultimately may represent the underlying neural strategies. Studies 2 (excessive medial knee displacement) and 3 (fatigue) both aimed to better understand its impact on the dynamic local stability. The main findings of the present thesis suggest: 1) there is a great robustness in muscle synergistic organization between swimmers at different levels of expertise (study 1, chapter II), which ultimately indicate that differences in muscle coordination is mainly explained by peripheral adaptations; 2) injury risk factors such as excessive medial knee displacement (study 2, chapter III) and fatigue (study 3, chapter IV) alter the dynamic local stability of the neuromuscular system towards a more unstable state. This change in dynamic local stability represents a loss of adaptability in the neuromuscular system reducing the flexibility to adapt to a perturbation.
Resumo:
Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.
Resumo:
In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.
Resumo:
Introdução: A síndrome dolorosa miofascial é um dos principais problemas encontrados na prática clínica, tendo como principais características os pontos gatilho (PG), ativos ou latentes. Os PG latentes têm uma elevada prevalência na musculatura da cintura escapular, nomeadamente ao nível do trapézio superior (TS), influenciando o controlo motor do ombro. A compressão isquémica aplicada no PG do TS poderá influenciar o comportamento muscular dos sinergistas durante o movimento de abdução no plano da omoplata. Objetivos: Este estudo visa estudar a influência da compressão isquémica aplicada no PG do TS na magnitude de ativação dos músculos TS, trapézio inferior (TI), grande dentado (GD), infra-espinhoso (IE) e deltóide médio (DM), assim como a relação muscular através da razão entre o TS e os restantes músculos em análise, durante o movimento de abdução no plano da omoplata. Métodos: O presente estudo é experimental, aleatório e controlado. Foram criados dois grupos, grupo controlo (GC) (n=14) e grupo experimental (GE) (n=15), a partir de uma amostra de 67 indivíduos. No GC foi aplicado um procedimento placebo e no GE foi aplicada no PG latente do TS a técnica de compressão isquémica. Antes e após a intervenção foi recolhida a atividade eletromiográfica dos músculos em análise, assim como os dados cinemáticos, durante o movimento de elevação do ombro no plano da omoplata. Para a análise registou-se a amplitude máxima de abdução e foi analisada a atividade muscular individual dos músculos em estudo assim como a razão entre o TS e os restantes músculos. Esta análise foi realizada em intervalos de 30° até ao final do movimento. Resultados: Não se verificaram diferenças na amplitude máxima de abdução, nem entre grupos (1º momento p=0,608, t=0,816; 2º momento p=0,119; t=1,252) nem entre os dois momentos em cada grupo (GC, t=-1,119; p=0,256; GE, t=-1,604, p=0,135). Na magnitude de ativação individual de cada músculo também não se verificaram diferenças significativas com a aplicação da técnica, tendo-se verificado no DM uma tendência para o aumento da ativação aquando da intervenção, ao longo de todo o arco de movimento, em comparação com a pré-intervenção, já no GC de controlo não se verificaram alterações entre momentos. Também na análise da razão entre músculos não se verificaram diferenças entre grupos. Conclusão: A intervenção realizada não influenciou nenhum dos parâmetros em análise do complexo articular do ombro nem a amplitude de movimento de abdução.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Motor inhibitory control plays a central role in adaptive behaviors during the entire lifespan. Inhibitory motor control refers to the ability to stop all (global) or a part (selective) of a planned or ongoing motor action. Although the neural processing underlying the global inhibitory control has received much attention from cognitive neuroscientists, brain modulations that occur during selective inhibitory motor control remain unknown. The aim of the present thesis is to investigate the spatio-temporal brain processes of selective inhibitory motor control in young and old adults using high-density electroencephalography. In the first part, we focus on early (preparatory period) spatio-temporal brain processes involved in selective and global inhibitory control in young (study I) and old adults (study II) using a modified Go/No-go task. In study I, we distinguished global from selective inhibition in the early attentional stage of inhibitory control and provided neurophysiological evidence in favor of the combination model. In study II, we showed an under-recruitment of neural resources associated with preservation of performance in old adults during selective inhibition, suggesting efficient cerebral and behavioral adaptations to environmental changes. In the second part, we investigate beta oscillations in the late (post-execution period) spatio-temporal brain processes of selective inhibition during a motor Switching task (i.e., tapping movement from bimanual to unimanual) in young (study III) and old adults (study IV). In study III, we identified concomitant beta synchronization related (i) to sensory reafference processes, which enabled the stabilization of the movement that was perturbed after switching, and (ii) to active inhibition processes that prevented movement of the stopping hand. In study IV, we demonstrated a larger beta synchronization in frontal and parietal regions in old adults compared to young adults, suggesting age-related brain modulations in active inhibition processes. Apart from contributing to a basic understanding of the electrocortical dynamics underlying inhibitory motor control, the findings of the present studies contribute to knowledge regarding the further establishment of specific trainings with aging. -- Le contrôle de l'inhibition motrice joue un rôle central dans les adaptations comportementales quel que soit l'âge. L'inhibition motrice se réfère à la capacité à arrêter entièrement (globale) ou en partie (sélective) une action motrice planifiée ou en cours. Bien que les processus neuronaux sous-jacents de l'inhibition globale aient suscité un grand intérêt auprès des neurosciences cognitives, les modulations cérébrales dans le contrôle de l'inhibition motrice sélective sont encore peu connues. Le but de cette thèse est d'étudier les processus cérébraux spatio-temporels du contrôle de l'inhibition motrice sélective chez les adultes jeunes et âgés en utilisant l'électroencéphalogramme à haute densité. Dans la première partie, nous comparons les processus cérébraux spatio-temporels précoces (préparation motrice) de l'inhibition sélective et globale chez des adultes jeunes (étude I) et âgés (étude II) en utilisant une tâche Go/No-go modifiée. Dans l'étude I, nous avons distingué l'inhibition globale et sélective au niveau des processus attentionnels précoces du contrôle de l'inhibition et nous avons apporté des preuves neurophysiologiques de l'existence d'un modèle de combinaison. Dans l'étude II, nous avons montré une sous-activation neuronale associée à un maintien de la performance dans l'inhibition sélective chez les adultes âgés, suggérant des adaptations cérébrales et comportementales aux contraintes environnementales. Dans la seconde partie, nous examinons les processus cérébraux spatio-temporels tardifs (post-exécution motrice) de l'inhibition sélective pendant une tâche de Switching (tapping bimanuel vers un tapping unimanuel) chez des adultes jeunes (étude III) et âgés (étude IV). Dans l'étude III, nous avons distingué des synchronisations beta liées (i) au traitement des réafférences sensorielles permettant de stabiliser le mouvement perturbé après le switching, et (ii) aux processus d'inhibition active afin d'empêcher les mouvements de la main arrêtée. Dans l'étude IV, cette synchronisation beta était plus forte dans les régions frontales et pariétales chez les âgés par rapport aux jeunes adultes suggérant des modulations cérébrales de l'inhibition active avec l'âge. Outre la contribution fondamentale sur la compréhension des dynamiques électrocorticales dans le contrôle de l'inhibition motrice, les résultats de ces études contribuent à développer les connaissances pour la mise en place de programmes d'entraînements adaptés aux personnes âgées.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The purpose of the current study was to understand how visual information about an ongoing change in obstacle size is used during obstacle avoidance for both lead and trail limbs. Participants were required to walk in a dark room and to step over an obstacle edged with a special tape visible in the dark. The obstacle's dimensions were manipulated one step before obstacle clearance by increasing or decreasing its size. Two increasing and two decreasing obstacle conditions were combined with seven control static conditions. Results showed that information about the obstacle's size was acquired and used to modulate trail limb trajectory, but had no effect on lead limb trajectory. The adaptive step was influenced by the time available to acquire and process visual information. In conclusion, visual information about obstacle size acquired during lead limb crossing was used in a feedforward manner to modulate trail limb trajectory.
Resumo:
This study analyzed inter-individual variability of the temporal structure applied in basketball throwing. Ten experienced male athletes in basketball throwing were filmed and a number of kinematic movement parameters analyzed. A biomechanical model provided the relative timing of the shoulder, elbow and wrist joint movements. Inter-individual variability was analyzed using sequencing and relative timing of tem phases of the throw. To compare the variability of the movement phases between subjects a discriminant analysis and an ANOVA were applied. The Tukey test was applied to determine where differences occurred. The significance level was p = 0.05. Inter-individual variability was explained by three concomitant factors: (a) a precision control strategy, (b) a velocity control strategy and (c) intrinsic characteristics of the subjects. Therefore, despite the fact that some actions are common to the basketball throwing pattern each performed demonstrated particular and individual characteristics.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
The influence of respiratory activity of the abdominal muscles on their reaction time in a postural task was evaluated. The electromyographic (EMG) onsets of the abdominal muscles and deltoid were evaluated in response to shoulder flexion initiated by a visual stimulus occurring at random throughout the respiratory cycle. Increased activity of the abdominal muscles was produced by inspiratory loading, forced expiration below functional residual capacity, and a static glottis-closed expulsive maneuver. During quiet breathing, the latency between activation of the abdominal muscles and deltoid was not influenced by the respiratory cycle. When respiratory activity of the abdominal muscles increased, the EMG onset of transversus abdominis and internal oblique, relative to deltoid, was significantly earlier for movements beginning in expiration, compared with inspiration [by 97-107 ms (P < 0.01) and 64-90 ms (P < 0.01), respectively]. However, the onset of transversus abdominis EMG was delayed by 31-54 ms (P < 0.01) when movement was performed during a static expulsive effort, compared with quiet respiration. Thus changes occur in early anticipatory contraction of transversus abdominis during respiratory tasks but they cannot be explained simply by existing activation of the motoneuron pool.