995 resultados para shielding gas mixture
Resumo:
The formation of silicon particles in rf glow discharges has attracted attention due to their effect as a contaminant during film deposition or etching. However, silicon and silicon alloy powders produced by plasma¿enhanced chemical vapor deposition (PECVD) are promising new materials for sintering ceramics, for making nanoscale filters, or for supporting catalytic surfaces. Common characteristics of these powders are their high purity and the easy control of their stoichiometry through the composition of the precursor gas mixture. Plasma parameters also influence their structure. Nanometric powders of silicon¿carbon alloys exhibiting microstructural properties such as large hydrogen content and high surface/volume ratio have been produced in a PECVD reactor using mixtures of silane and methane at low pressure (-1 Torr) and low frequency square¿wave modulated rf power (13.56 MHz). The a¿Si1¿xCx:H powders were obtained from different precursor gas mixtures, from R=0.05 to R=9, where R=[SiH4]/([SiH4]+[CH4]). The structure of the a¿Si1¿xCx:H powder was analyzed by several techniques. The particles appeared agglomerated, with a wide size distribution between 5 and 100 nm. The silane/methane gas mixture determined the vibrational features of these powders in the infrared. Silicon-hydrogen groups were present for every gas composition, whereas carbon¿hydrogen and silicon¿carbon bonds appeared in methane¿rich mixtures (R-0.6). The thermal desorption of hydrogen revealed two main evolutions at about 375 and 660¿°C that were ascribed to hydrogen bonded to silicon and carbon, respectively. The estimated hydrogen atom concentration in the sample was about 50%.
Resumo:
Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow.
Resumo:
Diplomityössä tutkitaan diodilaserhitsausta mahdollisena teollisuuden menetelmänä ja menetelmän vaatimuksia hitsattaessa ohutlevyjä. Työssä tutkittavat materiaalit ovat kylmävalssattu teräs ja ruostumaton teräs sekä liitosmuotoina päittäis-, laippa- ja päällekkäisliitos. Materiaalivahvuudet ovat 0,50 mm:stä 1,50 mm:iin. Työn tavoitteena on määrittää näille kyseisille materiaaleille ja liitosmuodoille hitsausnopeus levynvahvuuden funktiona. Lisäksi käsitellään diodilaserin rakennetta, säteen muodostusta, säteen muokkaamista, säteen analysointia ja säteen turvallisuuteen liittyviä asioita. Suoritetaan vertailua käytössä oleviin muihin lasertyöstömenetelmiin konepajoissa ja tehdään arvio mahdollisen diodilaserinvestoinnin kannattavuudesta. Diodilaserhitsauskokeissa käytettiin Hämeen ammattikorkeakoulun Riihimäen yksikön 1 kW:n tehoista diodilaseria. Koekappaleet leikattiin suuntaisleikkurilla. Osalle hitsatuista kappaleista tehtiin poikittaiset vetokokeet ja mitattiin mikrokovuudet. Virheitä tutkittiin silmämääräisesti sekä radiografisella kuvauksella. Kaikille tutkituille liitoksille, materiaaleille ja vahvuuksille saatiin määriteltyä hitsausnopeudet. Tehtyjen testien perusteella suuntaisleikkurin käyttö on mahdollista. Lisäksi havaittiin suojakaasun käytön myötä, että kirkkaan sulan aiheuttama heijastavuuden kasvu edellyttää hitsausnopeuden pienentämistä.
Resumo:
Diplomityön tavoitteena oli ruostumattoman teräksen koneellisen TIG-hitsauksen hitsausnopeuden lisääminen. Työssä tutkittiin suojakaasun koostumuksen vaikutusta hitsausnopeuteen sekä kahta uudehkoa prosessivariaatiota. Tutkitut prosessit olivat TIG-suurtaajuuspulssihitsaus sekä kaksoiskaasu-TIG-hitsaus. Kirjallisessa osassa perehdyttiin TIG-hitsauksen prosessiparametreihin ja -variaatioihin. Kokeellisessa osassa suoritettiin koehitsauksia hitsausnopeuksien selvittämiseksi. Tavoitteena oli tunkeuman kasvattaminen, mikä mahdollistaa hitsausnopeuden noston läpihitsattaessa. Suojakaasuina käytettiin sekä argonpohjaisia että heliumpohjaisia kaasuja, joihin oli lisätty vetyä. Vedyn avulla hitsausnopeus lisääntyi nykykäytäntöä suuremmillakin pitoisuuksilla. Uutena ilmiönä TIG-hitsauksessa havaittiin keyholen eli lävistysreiän syntyminen korkeita vetypitoisuuksia heliumpohjaisessa suojakaasussa käytettäessä. Keyhole oli kuitenkin erittäin epävakaa, joten jatkotutkimuksien tehtäväksi jää selvittää tarkemmin tämän ilmiön vaikutus. Tutkittuihin prosessivariaatioihin todettiin liittyvän useita laiteteknisiä ongelmia. Hitsausnopeuden suhteen tulokset jäivät vaatimattomiksi. Lähinnä keyholen aukaisemisessa ja aukipitämisessä menetelmistä havaittu hyöty antaa selvän aiheen jatkotutkimuksille.
Resumo:
Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa
Resumo:
Biokaasua syntyy mm. kaatopaikoilla, jätevedenpuhdistamoilla ja biokaasureaktoreissa, kun bakteerit hajottavat orgaanista ainesta hapettomissa olosuhteissa. Biokaasun tärkein ainesosa on metaani, jota biokaasussa on tyypillisesti hieman yli puolet. Muu osa biokaasusta on pääosin hiilidioksidia, mutta se sisältää myös paljon erilaisia epäpuhtauksia, jotka vaikeuttavat biokaasun hyötykäyttöä. Suomeen tuotava maakaasu puolestaan on lähes puhdasta metaania. Tämä diplomityö suoritettiin Gasum Oy:lle ja sen tarkoituksena oli tutkia millaisia toimenpiteitä vaaditaan, jotta biokaasua voidaan syöttää Suomen maakaasuverkostoon. Työssä suoritettiin katsaus biokaasun puhdistus- ja jalostusmenetelmiin, joilla biokaasun sisältämät epäpuhtaudet poistetaan ja metaanipitoisuus nostetaan lähes maakaasun tasolle hiilidioksidia poistamalla. Lisäksi työssä simuloitiin biokaasun syöttöä maakaasuverkostoon eri koostumuksin ja maakaasuverkoston eri osista näin syntyvän seoskaasun ominaisuuksien määrittämiseksi simulointiohjelma Simonen avulla. Työssä myös etsittiin parasta keinoa jäljittää maakaasuverkoston kaasun laatua ja hallita energiatasetta, kun kaasun laatu ei enää ole kaikkialla sama. Lisäksi suoritettiin lyhyt katsaus biokaasusyötön vaikutuksista päästökauppaan ja maakaasuverkoston järjestelmävastaavan tehtävään. Työssä tultiin siihen tulokseen, että biokaasun syöttö maakaasuverkostoon on mahdollista vain, kun biokaasu puhdistetaan ja jalostetaan. Tällöin biokaasun ja maakaasun seos täyttää maakaasuverkoston kaasulle asetetut laatukriteerit, vaikka yksin biokaasu ei sitä tee. Parhaaksi keinoksi hallita maakaasun ja biokaasun laatua todettiin kaasukromatografien käyttö.
Resumo:
Diplomityön tarkoituksena oli tutkia ja kehittää menetelmä arvometallien kuten kuparin, sinkin, koboltin ja nikkelin talteenottoon metallikloridiliuoksesta. Tavoitteena oli valita taloudellisin ja ympäristöystävällisin menetelmä, jolla saadaan nämä arvometallit myyntituotteiksi. Lisäksi puhdistetun prosessiveden tuli täyttää asetetut tavoitteet. Kirjallisuustyön perusteella laskettiin viidelle eri prosessivaihtoehdolle ainetaseet HSC Sim 6.0 ohjelmalla, joka on HSC Chemistry-pohjainen prosessien simulointi- ja mallinnusohjelma. Kaikissa vaihtoehdoissa oli ensimmäisenä prosessiosana kuparin, sinkin, koboltin ja nikkelin sulfidisaostus ja sakan pesu. Sulfidisaostusta seurasi vaihtoehtoisesti joko 1) hapetus hapella ja hydroksidisaostus, 2) hapetus vetyperoksidilla ja hydroksidisaostus, 3) pelkkä hydroksidisaostus, 4) hapetus SO2/O2-kaasuseoksella ja hydroksidisaostus tai 5) karbonaattisaostus. Taselaskennan perusteella valittiin kokeelliseen osaan tutkittavat prosessivaihtoehdot, jotka olivat sulfidisaostus, hydroksidisaostus, SO2/O2- hapetus ja hydroksidisaostus sekä karbonaattisaostus. Kokeissa arvometallit saatiin talteenotettua sulfidisaostuksella selektiivisimmin lämpötilassa 55 °C ja pH:ssa 4. Näissä olosuhteissa reagenssin kulutus verrattaessa muihin tehtyihin sulfidisaostuksiin oli pienin. Sakka laskeutui ja suotautui hyvin. Loppusakan sisältämien metallien (kupari, sinkki ja koboltti) pitoisuudet olivat korkeimmat. Myös nikkelin määrä oli suuri. Mangaani ja rauta saatiin talteenotettua selektiivisimmin karbonaattisaostuksella lämpötilassa 65 °C. Sakka sisälsi eniten mangaania. Sakka laskeutui ja suotautui hyvin. Tällä menetelmällä puhdistetun prosessiveden laatu täytti asetetut tavoitteet.
Resumo:
This paper describes the separation of CO2 from a gas mixture containing 25% CO2, 4% O2 and 71% N2 using the pressure swing adsorption (PSA) technique. The adsorbent selected was the zeolite 13X due to its great adsorption capacity for CO2 and selectivity towards the other components of the gas mixture. The experimental technique was designed to identify the most important variables for the process and to optimize it. It is shown that the PSA technique can be used to separate CO2 from O2 and N2 to obtain an effluent containing 2% CO2 with 99% separation efficiency.
Resumo:
In this work the production of synthesis gas from a mixture of methane (CH4) and carbon dioxide (CO2) by thermal plasma was studied. The best relation found for the gas mixture [CO2]/[CH4] was 1.3. Under the excess of CH4 in the gas mixture soot was formed and also benzene, indene and naphthalene were identified. The disulfides compounds in the gas mixture were degraded causing no interference in the synthesis gas production, suggesting no needs of pretreatment step for sulfurorganic compounds removal in the process
Resumo:
This research was motivated by the need to examine the potential application areas of process intensification technologies in Neste Oil Oyj. According to the company’s interest membrane reactor technology was chosen and applicability of this technology in refining industry was investigated. Moreover, Neste Oil suggested a project which is related to the CO2 capture from FCC unit flue gas stream. The flowrate of the flue gas is 180t/h and consist of approximately 14% by volume CO2. Membrane based absorption process (membrane contactor) was chosen as a potential technique to model CO2 capture from fluid catalytic cracking (FCC) unit effluent. In the design of membrane contactor, a mathematical model was developed to describe CO2 absorption from a gas mixture using monoethanole amine (MEA) aqueous solution. According to the results of literature survey, in the hollow fiber contactor for laminar flow conditions approximately 99 % percent of CO2 can be removed by using a 20 cm in length polyvinylidene fluoride (PDVF) membrane. Furthermore, the design of whole process was performed by using PRO/II simulation software and the CO2 removal efficiency of the whole process obtained as 97 %. The technical and economical comparisons among existing MEA absorption processes were performed to determine the advantages and disadvantages of membrane contactor technology.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
Kandidaatintyön johdantokappaleessa esitellään vetyperoksidi ja mihin sitä käytetään teollisuudessa. Työssä vertaillaan antrakinoniprosessia ja suoraa prosessia sekä selvitetään nykyisin enemmän vetyperoksidituotantoon käytetyn antrakinoniprosessin ongelmakohdat ja osoitetaan, miksi suora synteesi vetyperoksidin tuotannossa olisi parempi vaihtoehto. Kandidaatintyön käsittelee suurilta osin turvallisuusongelmia, joita esiintyy suoran synteesin yhteydessä. Kirjallisuudesta on etsitty ratkaisuja näihin ongelmiin, kuten membraaniprosessin käyttöä räjähdysvaaran välttämiseksi. Pienemmän reaktorin eli ns. mikroreaktorin käyttö tuo mukanaan monia etuja vetyperoksidin tuotantoon. Tällöin prosessi on turvallisempi ja sitä on helpompi hallita. Mikroreaktorissa voidaan käyttää korkeampia lämpötiloja ja paineita kuin makroreaktorilla ilman, että räjähdysvaara prosessissa kasvaisi. Mikroreaktorin sisällä olevat mikrokanavat luovat turvallisen ympäristön synteesille. Aspen plus – simulointiohjelmalla mallinnettiin ja simulointiin suoran prosessin kriittisiä virtoja mikroreaktorissa. Tarkoituksena oli löytää virrat, joissa kulkee mahdollisesti räjähtävä kaasuseos. Kaasumaiset prosessivirrat ovat kriittisimmät vetyperoksidin suorassa synteesissä, koska ne aiheuttavat todennäköisemmin räjähdyksen kuin nestemäiset prosessivirrat. Kaikkein eniten prosessiturvallisuutta uhkaavat ainevirrat ennen ja jälkeen mikroreaktoria.
Resumo:
The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.
Resumo:
Harmful sulfur dioxide (SO2) emissions from power plants have increasingly been restricted since the 1970’s. Circulating fluidized bed (CFB) scrubber is a dry flue gas desulfurization method of absorbing SO2 out of the flue gas with sorbent. In current commercial plants, the used sorbent is commercial or on-site hydrated calcium hydroxide. The CFB scrubber process is characterized by a close but adequate approach to the flue gas saturation temperature that is achieved by spraying water to the absorber followed by a particulate control device. Very high SO2 removal is achieved along with a dry byproduct that is continuously recirculated back to the absorber for enhanced sorbent utilization. The aim of this work is to develop a method that would characterize the reactivity of sorbents used in CFB scrubbers and to conclude how different process parameters and sorbent properties affect the sulfur absorption. The developed characterization method is based on a fixed bed of sorbent and inert silica sand, through which an SO2 containing gas mixture is led. The reaction occurs in the bed and the SO2 concentration in the outlet as a function of time, a breakthrough curve, is obtained from the analyzer. Reactivity of the sorbents are evaluated by the absorbed sulfur amount. Results suggest that out of process parameters, lower SO2 concentration, lower temperature and higher moisture content enhance the desulfurization. Between different sorbents, specific surface area seems to be the most significant parameter. Large surface area linearly leads to more efficient desulfurization. Overall, the solid conversion levels in the tests were very low creating uncertainty to the validity of the results. New desing is being planned to overcome the problems of the device.
Resumo:
Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.