735 resultados para shellfish


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements to an established HPLC method are introduced. The modified method is more efficient for separation and detection of the toxins responsible for paralytic shellfish poisoning (PSP). The PSP toxin content of two strains of Alexandrium tamarense and approximately forty shellfish samples collected from different locations in China have been analyzed with this HPLC method. Only one shellfish sample, collected from Lianyungang, China, contained PSP toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Me optimal conditions were established for the extraction of paralytic shellfish poisoning toxins from gonad of Chlamys nobills using acetic acid and hydrochloric acid in the concentration range of 0.04-1.0 mol/L. A 10-g portion of gonad of Chlamys nobilis was extracted by boiling for 5 min with 1.0 mL acetic acid and hydrochloric acid in a 50-mL beaker. Meanwhile, a portion of gonad of Chlamys nobilis was extracted by sonication in the solution of 0.3 mol/L HAc + 0.2 mol/L HCl for a total period of 5-30 min. The raw extract was centrifuged at 3500 r/min for 5 min and the pH of supernatant was adjusted from 2.0 to 4.0 by 0.1 mol/L NaOH or 5 mol/L HCL After passing through a Millipore ultrafiltration membrane (10000 MW cut-off), ultrafiltrate was then analyzed by HPLC. The results showed that hydrochloric acid in the concentration range of 0.25-1.0 mol/L caused a significant decrease of N-sulfocarbarnoyl-11-hydroxysulfate toxin C1 (C1), C2 and gonyautoxin 5 (GTX5) and the concomitant increase of GTX2,3. However, the amount of the three unstable toxins did not show any change using the extraction with acetic acid. Under the same concentration of acetic acid (0.3 mol/L) and hydrochloric acid (0.2 mol/L), the amount of C1 in the ultrasonic extraction was obviously lower than the boiling one, while C2 showed slightly higher than the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To study the transfer of paralytic shellfish toxins (PST) using four simulated marine food chains: dinoflagellate Alexandrium tamarense -> Arterriia Artemia salina -> Mysid shrimp Neomysis awatschensis; A. tamarense-N. awatschensis: A. taniarense A. salina -> Perch Lateolabrax japonicus; and A. tamarense -> L. japonicus. Methods The ingestion of A. tamarense, a producer of PST, by L. japonicus, N. awatschensis, and A. salina was first confirmed by microscopic observation of A. tamarense cells in the intestine samples of the three different organisms, and by the analysis of Chl.a levels iii the samples. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly ibrough the vector of A. salina was then studied. The toxicity of samples was measured using the AOAC mouse bioassay method, and the toxin content and profile of A. tamarense were analyzed by the HPLC method. Results Both A. salina and N. awatschensis could ingest A. tamarense cells. However, the ingestion capability of A. salina exceeded that of N. awatschensis. After the exposure to the culture of A. tamarense (2 000 cells(.)mL(-1)) for 70 minutes, the content of ChLa in A. salina and N. awatschensis reached 0.87 and 0.024 mu g-mg(-1), respectively. Besides, A. tamarense cells existed in the intestines of L. japonicus, N. awatschensis and A. salina by microscopic observation. Therefore, the three organisms could ingest A. tamarense cells directly. A. salina could accumulate high content of PST, and the toxicity of A. salina in samples collected on days 1, 4, and 5 of the experiment was 2.18, 2.6, and 2.1 MU(.)g(-1), respectively. All extracts from the samples could lead to death of tested mice within 7 minutes, and the toxin content in arternia sample collected on the 1st day was estimated to be 1.65x10(-5) pg STX equa Vindividual. Toxin accumulation in L. japonicus and N. awatschensis directly from the feeding on A. tamarense or indirectly froin the vector of A. salina was also studied. The mice injected with extracts from L. japonicus and N. awatschensis samples that accumulated PST either directly or indirectly showed PST intoxication symptoms, indicating that low levels of PST existed in these samples. Conclusion Paralytic shellfish toxins can be transferred to L. japonicus, N. awatschensis, and A. salina from A. taniarense directly or indirectly via the food chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze and evaluate the status of organochlorine pollutants in the Changjiang (Yangtze River) estuary and adjacent waters, the concentrations of hexachlorocyclohexane (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in shellfish collected in study area from 2006 to 2007 were determined with gas chromatography (GC). The concentration range of HCHs was (ND-12.13)x10(-3) mg/kg wet weight and averaged at 0.54x10(-3) mg/kg while the concentration of DDTs was in the range of (4.06-281.73) x10(-3) mg/kg with a mean of 57.52x10(-3) mg/kg in the survey areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorine pollutants in the areas. The concentrations of DDTs in the shellfish were higher than HCHs', so that DDTs could be considered as typical organochlorines pollutants. The HCHs in all the shellfish conformed to the first level of criterion (0.02 mg/kg) of the Marion Biology Quality (GB 18421-2001), and that of DDTs in most samples were beyond the first level (0.01 mg/kg) but conformed to the second level (0.10 mg/kg). On average, alpha-HCH and delta-HCH occupied the most part of HCHs, while O,P'-DDT and P,P'-DDT occupied the most part of DDTs. The concentrations of organocholorine pesticides in shellfish samples varied in site and in species. The highest level occurred at the Shengsi (SS), followed by Yangkougang (YKG), Lvsi (LS), Dongyuan (DY) and Beibayao (BBY), low concentrations were observed at Changsha (CS), Beidaodi (BDD), and Gouqi (GQ). The concentration of HCHs and DDTs in most sites decreased clearly from 2006 to 2007 except for YKG, DY, BDD, LYS, and SS. All of above results suggested that the study area was slightly affected by organochlorine pesticide, special by DDTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method based on protein phosphatase enzyme activity inhibition for the detection of diarrhetic shellfish poison (DSP) was used to analyze the DSP toxicity in three oyster samples. Based on the standard dose-effect curve developed with a series of okadaic acid (OA) standard solutions, the DSP toxicity of the three oyster samples collected were screened, and the results showed that there were no OA and dinophysis toxins ( DTXs) in the samples without hydrolization. However, the OA toxicity could be detected in two of the hydrolyzed samples, and the OA toxicity of the two samples were 1.81 and 1.21 mu g OA eq./kg oyster, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry(HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds in the shellfish samples. Agilent TC-C-18 column was selected, mobile phase of the HPLC was CH3CN:H2O: CH3COOH = 65:23:12 (V/V), 0. 05% TEA, pH = 3.0 at flow rate 0.4 mL/min. Five mixed organotin standards from 100 mu g/L to 0. 5 mu g/L was used for the method evaluation. The experimental results indicate that the linearity (R-2) for each compound was over 0.998. The shellfish samples were treated by supersonic extraction with mobile phase for 30min. Four organotin compounds including dibutyltin (DBT), tributyltin (TBT), diphenyltin (DphT) and triphenyltin (TPhT) in shellfish samples were detected with method mentioned above. It was found that the domain compounds in the samples were tributyltin (TBT) and triphenyltin (TPhT). The recoveries test from the standard addition for trimethyltin (TMT tributyltin (TBT), and triphenyltin (TPhT) were, over 80%. However, the recoveries for diphenyltin (DPhT) and dibutyltin (DBT) were relatively low, 37.3% and 75.2% respectively. The reason might be attributed to the decomposition of those compounds during the extraction procedure. The further study on this subject is under the progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small proportion of harmful algae produce toxins which are harmful to human health. Strict monitoring programmes are in place within Ireland and the EU to effectively manage risk to human consumers of shellfish species that have accumulated marine biotoxins in their tissues. However, little is known about the impacts of HABs on shellfish health. This study used Solid Phase Adsorption and Toxin Tracking (SPATT) for the passive sampling of algal biotoxins at Lough Hyne Marine Nature Reserve in West Cork, Ireland. Spatial and temporal monitoring of the incidence of a wide range of lipophilic toxins was assessed over a 4-month period. Active sampling accumulated sufficient quantities of toxin for use in subsequent experimentation. In addition to commonly occurring Diarrhetic Shellfish Poisoning (DSP) toxins, Dinophysis toxin-1 and Pinnatoxin-G were both detected in the samples. This is the first identification of these latter two toxins in Irish waters. The effects of the DSP toxin okadaic acid (OA) were investigated on three shellfish species: Mytilus edulis, Ruditapes philippinarum and Crassostrea gigas. Histological examination of the gill, mantle and hepatopancreas tissues revealed varying intensity of damage depending both on the tissue type and the species involved. At the cellular level, flow cytometric analysis of the differential cell population distribution was assessed. No change in cell population distribution was observed in Mytilus edulis or Ruditapes philippinarum, however significant changes were observed in Crassostrea gigas granulocytes at the lower levels of toxin exposure. This indicated a chemically-induced response to OA. DNA fragmentation was measured in the haemolymph and hepatopancreas cells post OA-exposure in Mytilus edulis and Crassostrea gigas. A significant increase in DNA fragmentation was observed in both species over time, even at the lowest OA concentrations. DNA fragmentation could be due to genotoxicity of OA and/or to the induction of cell apoptosis.