973 resultados para sheet metal forming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact conditions at the die radius are of primary importance to the wear response for many sheet metal forming processes. In particular, a detailed understanding of the contact pressure at the wearing interface is essential for the application of representative wear tests, the use of wear resistant materials and coatings, the development of suitable wear models, and for the ultimate goal of predicting tool life. However, there is a lack of information concerning the time-dependant nature of the contact pressure response in sheet metal stamping. This work provides a qualitative description of the evolution and distribution of contact pressure at the die radius for a typical channel forming process. Through an analysis of the deformation conditions, contact phenomena and underlying mechanics, it was identified that three distinct phases exist. Significantly, the initial and intermediate stages resulted in severe and localised contact conditions, with contact pressures significantly greater than the blank material yield strength. The final phase corresponds to a larger contact area, with steady and smaller contact pressures. The proposed contact pressure behaviour was compared to other results available in the literature and also discussed with respect to tool wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is in two parts, theory and experimental verification. (1) Theoretical Study In this study it is, for obvious reasons, necessary to analyse the concept of formability first. For the purpose of the present investigation it is sufficient to define the four aspects of formability as follows: (a) the formability of the material at a critical section, (b) the formability of the material in general, (c) process efficiency, (d) proportional increase in surface area. A method of quantitative assessment is proposed for each of the four aspects of formability. The theoretical study also includes the distinction between coaxial and non-coaxial strains which occur, respectively, in axisymmetrical and unsymmetrical forming processes and the inadequacy of the circular grid system for the assessment of formability is explained in the light of this distinction. (2) Experimental Study As one of the bases of the experimental work, the determination of the end point of a forming process, which sets the limit to the formability of the work material, is discussed. The effects of three process parameters on draw-in are shown graphically. Then the delay of fracture in sheet metal forming resulting from draw-in is analysed in kinematical terms, namely, through the radial displacements, the radial and the circumferential strains, and the projected thickness of the workpiece. Through the equilibrium equation of the membrane stresses, the effect on the shape of the unsupported region of the workpiece, and hence the position of the critical section is explained. Then, the effect of draw-in on the four aspects of formability is discussed throughout this investigation. The triangular coordinate system is used to present and analyse the triaxial strains involved. This coordinate system has the advantage of showing all the three principal strains in a material simultaneously, as well as representing clearly the many types of strains involved in sheet metal work.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ever increasing demands on functional integration of high strength light weight products leads to the development of a new class of manufacturing processes. The application of bulk forming processes to sheet or plate semi-finished products, sometimes in combination with conventional sheet forming processes creates new products with the requested properties. The paper defines this new class of sheet-bulk metal forming processes, gives an overview of the existing processes belonging to this class, highlights the tooling aspects as well as the resulting product properties and presents a short summary of the relevant work that has been done towards modeling and simulation. © 2012 CIRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to 20% of all sheet metal produced is scrapped as blanking skeletons. A novel process is therefore designed and examined, aiming to transform tessellating 'pre-blanks' in-plane into the real blanks required for stamping. Prior to blanking, the sheet is formed with a set of ridged dies, from which pre-blanks are cut and then flattened into true blanks. Several different approaches to designing ridged dies are evaluated by simulation and experiment, and the best results demonstrate a potential reduction in blanking yield losses for can-making from 9.3% to 6.9%. © 2013 CIRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the development of new ultra-fine grained/ nano-structured high strength aluminium alloys designed for automotive applications and explores the frontiers of the roll forming process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction plays an important role in sheet metal forming (SMF) and the roughness of the surface of the sheet is a major factor that influences friction. In finite element method (FEM) models of metal forming, the roughness has usually been assumed to be constant; even though it is commonly observed that sheet drawn under tension over a tool radius results in the surface becoming shiny, indicating a major change in surface morphology. An elastic–plastic FEM model for micro-contact between a flat surface and a single roughness peak has been developed. The model was used to investigate the effect of the membrane stress in the sheet on the deformation of an artificial roughness peak. From the simulation results, the change in asperity, or deformation of the local peak, for a given nominal tool contact stress is significantly influenced by the local substrate stress. The height of the asperity decreases with increasing substrate stress and the local pressure is much higher than the nominal pressure. In addition, the local contact stress decreases with an increase in the substrate stress levels.