967 resultados para serotonergic neurons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Youngsters are increasingly using 3,4 methylenedioxymethamphetamine, known as ecstasy, because it is wrongly believed that it does not induce harm. However, there are many reports of adverse effects, including acute intoxication, abuse potential, and possible neurotoxic effects. Therefore, health care providers need to promptly recognize the symptoms of systemic intoxication in order to initiate early treatment. The drug is used by the oral route for long hours during crowded dance parties. Acutely, ecstasy increases the release of serotonin and decreases its reuptake, leading to hypertension, hyperthermia, trismus, and vomiting. There is debate on whether recreational doses of ecstasy cause permanent damage to human serotonergic neurons. Ecstasy users showed a high risk of developing psychopathological disturbances. The prolonged use of ecstasy might induce dependence, characterized by tolerance and hangover. Acute ecstasy intoxication needs emergency-type treatment to avoid the dose-dependent increase in adverse reactions and in severity of complications. There are no specific antidotes to be used during acute intoxication. Supportive measures and medical treatment for each one of the complications should be implemented, keeping in mind that symptoms originate mainly from the central nervous system and the cardiovascular system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To analyze the differential recruitment of the raphe nuclei during different phases of feeding behavior, rats were subjected to a food restriction schedule (food for 2 h/day, during 15 days). The animals were submitted to different feeding conditions, constituting the experimental groups: search for food (MFS), food ingestion (MFI), satiety (MFSa) and food restriction control (MFC). A baseline condition (BC) group was included as further control. The MFI and MFC groups, which presented greater autonomic and somatic activation, had more FOS-immunoreactive (FOS-IR) neurons. The MFI group presented more labeled cells in the linear (LRN) and dorsal (DRN) nuclei; the MFC group showed more labeling in the median (MRN), pontine (PRN), magnus (NRM) and obscurus (NRO) nuclei; and the MFSa group had more labeled cells in the pallidus (NRP). The BC exhibited the lowest number of reactive cells. The PRN presented the highest percentage of activation in the raphe while the DRN the lowest. Additional experiments revealed few double-labeled (FOS-IR+ 5-HT-IR) cells within the raphe nuclei in the MFI group, suggesting little serotonergic activation in the raphe during food ingestion. These findings suggest a differential recruitment of raphe nuclei during various phases of feeding behavior. Such findings may reflect changes in behavioral state (e.g., food-induced arousal versus sleep) that lead to greater motor activation, and consequently increased FOS expression. While these data are consistent with the idea that the raphe system acts as gain setter for autonomic and somatic activities, the functional complexity of the raphe is not completely understood. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that the ascending dorsal raphe (DR)-serotonergic (5-HT) pathway facilitates conditioned avoidance responses to potential or distal threat, while the DR-periventricular 5-HT pathway inhibits unconditioned flight reactions to proximal danger. Dysfunction on these pathways would be, respectively, related to generalized anxiety (GAD) and panic disorder (PD). To investigate this hypothesis, we microinjected into the rat DR the benzodiazepine inverse receptor agonist FG 7142, the 5-HT1A receptor agonist 8-OH-DPAT or the GABA(A) receptor agonist muscimol. Animals were evaluated in the elevated T-maze (ETM) and light/dark transition test. These models generate defensive responses that have been related to GAD and PD. Experiments were also conducted in the ETM 14 days after the selective lesion of DR serotonergic neurons by 5,7-dihydroxytriptamine (DHT). In all cases, rats were pre-exposed to one of the open arms of the ETM 1 day before testing. The results showed that FG 7142 facilitated inhibitory avoidance, an anxiogenic effect, while impairing one-way escape, an anxiolytic effect. 8-OH-DPAT, muscimol, and 5,7-DHT-induced lesions acted in the opposite direction, impairing inhibitory avoidance while facilitating one-way escape from the open arm. In the light/dark transition, 8-OH-DPAT and muscimol increased the time spent in the lighted compartment, an anxiolytic effect. The data supports the view that distinct DR-5-HT pathways regulate neural mechanisms underlying GAD and PD. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including as a neurotransmitter in the nervous system, in which may exert varied post-synaptic actions. Inside the neuro-axis, the location of 5-HT neurons is almost restricted to the raphe nuclei of the brainstem, such that 5-HT-immunoreactivity can be considered a marker of the raphe nuclei. The raphe nuclei are located in the brainstem, at or near the midline. The serotonergic groups were originally alphanumerically classified as B1 to B9 towards caudorrostral in rats and can be divided into upper and lower groups. In this study the distribution of serotonergic neurons was studied using immunohistochemistry in the brain of the rock cavy (Kerodon rupestris), a species of rodent endemic to Northeastern Brazil. The cytoarchitectonic location of serotonergic neurons was established in series of adjacent coronal and sagittal sections stained by the Nissl method and immunohistochemistry for 5-HT. Thus, we defined the raphe rostral linear, caudal linear, dorsal, median, and paramedian pontine raphe nuclei, and B9 cluster, constituting the rostral group, and the interpositus, magnus, obscure and palidus, constituting the caudal part of the group, comparable to which has been described for other mammalian species

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is evidence that serotonin [ 5- hydroxytryptamine ( 5- HT)] is involved in the physiological responses to hypercapnia. Serotonergic neurons represent the major cell type ( comprising 15 - 20% of the neurons) in raphe magnus nucleus ( RMg), which is a medullary raphe nucleus. In the present study, we tested the hypothesis 1) that RMg plays a role in the ventilatory and thermal responses to hypercapnia, and 2) that RMg serotonergic neurons are involved in these responses. To this end, we microinjected 1) ibotenic acid to promote nonspecific lesioning of neurons in the RMg, or 2) anti- SERT- SAP ( an immunotoxin that utilizes a monoclonal antibody to the third extracellular domain of the serotonin reuptake transporter) to specifically kill the serotonergic neurons in the RMg. Hypercapnia caused hyperventilation and hypothermia in all groups. RMg nonspecific lesions elicited a significant reduction of the ventilatory response to hypercapnia due to lower tidal volume ( V-T) and respiratory frequency. Rats submitted to specific killing of RMg serotonergic neurons showed no consistent difference in ventilation during air breathing but had a decreased ventilatory response to CO2 due to lower VT. The hypercapnia- induced hypothermia was not affected by specific or nonspecific lesions of RMg serotonergic neurons. These data suggest that RMg serotonergic neurons do not participate in the tonic maintenance of ventilation during air breathing but contribute to the ventilatory response to CO2. Ultimately, this nucleus may not be involved in the thermal responses CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wealth of evidence indicates that the dorsal raphe nucleus (DR) is not a homogenous structure, but an aggregate of distinctive populations of neurons that may differ anatomically, neurochemically and functionally. Other findings suggest that serotonergic neurons within the mid-caudal and caudal part of the DR are involved in anxiety processing while those within the lateral wings (IwDR) and ventrolateral periaqueductal gray (vIPAG) are responsive to panic-evoking stimuli/situations. However, no study to date has directly compared the activity of 5-HT and non-5HT neurons within different subnuclei of the DR following the expression of anxiety- and panic-related defensive responses. In the present investigation, the number of doubly immunostained cells for Fos protein and tryptophan hydroxylase, a marker of serotonergic neurons, was assessed within the rat DR, median raphe nucleus (MRN) and PAG following inhibitory avoidance and escape performance in the elevated T-maze, behaviors associated with anxiety and panic, respectively. Inhibitory avoidance, but not escape, significantly increased the number of Fos-expressing serotonergic neurons within the mid-caudal part of the dorsal subnucleus, caudal and interfascicular subnuclei of the DR and in the MRN. Escape, on the other hand, caused a marked increase in the activity of non-5HT cells within the IwDR, vIPAG, dorsolateral and dorsomedial columns of the PAG. These results strongly corroborate the view that different subsets of neurons in the DR are activated by anxiety- and panic-relevant stimuli/situations, with important implications for the understanding of the pathophysiology of generalized anxiety and panic disorders. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including the nervous system acting as a neurotransmitter. Within the neuro-axis, the location of the majority of the 5-HT neurons is superimposed with raphe nuclei of the brain stem, in the median line or its vicinity, so that neuronal 5-HT can be considered a marker of the raphe nuclei. Serotonergic neurons are projected to almost all areas of the brain. Studies show the participation of serotonin in regulating the temperature, feeding behavior, sexual behavior, biological rhythms, sleep, locomotor function, learning, among others. The anatomy of these groups has been revised in many species, including mouse, rabbit, cat and primates, but never before in a bat species from South America. This study aimed to characterize the serotonergic clusters in the brain of the bat Artibeus planirostris through immunohistochemistry for serotonin. Seven adult bat males of Artibeus planirostris species (Microchiroptera, Mammalia) were used in this study. The animals were anesthetized, transcardially perfused and their brains were removed. Coronal sections of the frozen brain of bats were obtained in sliding microtome and subjected to immunohistochemistry for 5-HT. Delimit the caudal linear (CLi), dorsal (DR), median (MnR), paramedian (PMnR), pontine (PNR), magnus (MgR), pallidus (RPA) and obscurus (ROb) raphe nucleus, in addition to the groups B9 and rostral and caudal ventrolateral (RVL/CVL). The serotonergic groups of this kind of cheiroptera present morphology and cytoarchitecture relatively similar to that described in rodents and primates, confirming the phylogenetic stability of these cell clusters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensitization is a simple form of learning which refers to an enhancement of a behavioral response resulting from an exposure to a novel stimulus. While sensitization is found throughout the animal world, little is known regarding the underlying neural mechanisms. By taking advantage of the simple nervous system of the marine mollusc Aplysia, I have begun to examine the cellular and molecular mechanisms underlying this simple form of learning. In an attempt to determine the generality of the mechanisms of neuromodulation underlying sensitization, I have investigated and compared the modulation of neurons involved in two defensive behaviors in Aplysia, the defensive inking response and defensive tail withdrawal.^ The motor neurons that produce the defensive release of ink receive a slow decreased conductance excitatory postsynaptic potential (EPSP) in response to sensitizing stimuli. Using electrophysiological techniques, it was found that serotonin (5-HT) mimicked the physiologically produced slow EPSP. 5-HT produced its response through a reduction in a voltage-independent conductance to K('+). The 5-HT sensitive K('+) conductance of the ink motor neurons was separate from the fast K('+), delayed K('+), and Ca('2+)-activated K('+) conductances found in these and other molluscan neurons. 5-HT was shown to produce a decrease in K('+) conductance in the ink motor neurons through an elevation of cellular cAMP.^ The mechanosensory neurons that participate in the defensive tail withdrawal response are also modulated by sensitizing stimuli through the action of 5-HT. Using electrophysiological techniques, it was found that 5-HT modulated the tail sensory neurons through a reduction in a voltage-dependent conductance to K('+). The serotonin-sensitive K('+) conductance was found to be largely a Ca('2+)-activated K('+) conductance. Much like the ink motor neurons, 5-HT produced its modulation through an elevation of cellular cAMP. While the actual K('+) conductance modulated by 5-HT in these two classes of neurons differs, the following generalizations can be made: (1) the effects of sensitizing stimuli are mimicked by 5-HT, (2) 5-HT produces its effect through an elevation of cellular cAMP, and (3) the conductance to K('+) is modulated by 5-HT. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society