990 resultados para sequence variations
Resumo:
La Enfermedad de Pompe (EP) es un desorden metabólico caracterizado por la deficiencia de alfa-glucosidasa acida (GAA), una enzima que cataliza la hidrolisis de las uniones glucosidicas α-1.4 y α-1,6 de glucógeno. Esta deficiencia resulta en acumulación de glucógeno en todos los tejidos, especialmente en musculo esquelético. Los pacientes con EP muestran un gran espectro de fenotipos con respecto a la edad de inicio, progresión de la enfermedad, severidad y tasa de progresión a muerte. El curso clínico de la enfermedad es principalmente determinado por la naturaleza de las variaciones genéticas de GAA quellevan a diferentes grados de deficiencia enzimática. Hasta la fecha alrededor de 400 distintas variaciones en la secuencia de GAA han sido descritas, y en algunos casos la correlación genotipo-fenotipo no es claramente evidente. En este estudio se describe el primer análisis genético y clínico de pacientes colombianos con EP en 13 individuos afectados. La secuenciación directa del gen GAA, revelo ocho distintas mutaciones relacionadas con la etiología de EP incluyendo dos nuevas mutaciones missense c.1106T>C (p.Leu369Pro) y c.2236T >C (p. Trp746Arg). Estudios funcionales in vitro mostraron que los cambios estructurales conferidos por ambas mutaciones no inhiben la síntesis del precursor de GAA de 110 KD pero afectan el procesamiento y el transporte intra-celular de la proteína.
Resumo:
FOXO4 constitutes a coherent candidate gene associated with premature ovarian failure (POF) pathogenesis. This study sequenced the coding and exon-flanking regions of this gene in a panel of 116 POF patients and 143 controls of Tunisian origin. In both groups, the IVS2 + 41T > G sequence variant was identified. It is concluded that coding mutations of FOXO4 should not be a common cause of the disease in women from the Tunisian population. However, this study cannot exclude that FOXO4 dysfunctions, originated from open reading frame or promoter sequence variations, might be associated with the pathogenesis of the disease in other ethnical groups.
Resumo:
Inversions breaking the 1041 bp int1h-1 or the 9.5-kb int22h-1 sequence of the F8 gene cause hemophilia A in 1/30,000 males. These inversions are due to homologous recombination between the above sequences and their inverted copies on the same DNA molecule, respectively, int1h-2 and int22h-2 or int22h-3. We find that (1) int1h and int22h duplicated more than 25 million years ago; (2) the identity of the copies (>99%) of these sequences in humans and other primates is due to gene conversion; (3) gene conversion is most frequent in the internal regions of int22h; (4) breakpoints of int22h-related inversions also tend to involve the internal regions of int22h; (5) sequence variations in a sample of human X chromosomes defined eight haplotypes of int22h-1 and 27 of int22h-2 plus int22h-3; (6) the latter two sequences, which lie, respectively, 500 and 600 kb telomeric to int22h-1 are five-fold more identical when in cis than when in trans, thus suggesting that gene conversion may be predominantly intrachromosomal; (7) int1h, int22h, and flanking sequences evolved at a rate of about 0.1% substitutions per million years during the divergence between humans and other primates, except for int1h during the human-chimpanzee divergence, when its rate of evolution was significantly lower. This is reminiscent of the slower evolution of palindrome arms in the male specific regions of the Y chromosome and we propose, as an explanation, that intrachromosomal gene conversion and cosegregation of the duplicated regions favors retention of the ancestral sequence and thus reduces the evolution rate.
Resumo:
The barley β-amylase I (Bmy1) locus encodes a starch breakdown enzyme whose kinetic properties and thermostability are critical during malt production. Studies of allelic variation at the Bmy1 locus have shown that the encoded enzyme can be commonly found in at least three distinct thermostability classes and demonstrated the nucleotide sequence variations responsible for such phenotypic differences. In order to explore the extent of sequence diversity at the Bmy1 locus in cultivated European barley, 464 varieties representing a cross-section of popular varieties grown in western Europe over the past 60 years, were genotyped for three single nucleotide polymorphisms chosen to tag the four common alleles found in the collection. One of these haplotypes, which has not been explicitly recognised in the literature as a distinct allele, was found in 95% of winter varieties in the sample. When release dates of the varieties were considered, the lowest thermostability allele (Bmy1-Sd2L) appeared to decrease in abundance over time, while the highest thermostability allele (Bmy1-Sd2H) was the rarest allele at 5.4% of the sample and was virtually confined to two-row spring varieties. Pedigree analysis was used to track transmission of particular alleles over time and highlighted issues of genetic stratification of the sample.
Resumo:
Objective: Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness, Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. Methods: We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Results: Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6- D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected 0 67delT, p.Trp24X, p.Val37lle, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro, Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27lle, p.Met34hr, p.Ala40Ala, and p.Gly160Ser. Two previously reported Mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. Conclusions: The present study demonstrates that Mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.
Resumo:
Canavan disease, an inherited leukodystrophy, is caused by mutations in the aspartoacylase (ASPA) gene. It is most common among children of Ashkenazi Jewish descent but has been diagnosed in many diverse ethnic groups. Two mutations comprise the majority of mutant alleles in Jewish patients, while mutations in the ASPA gene among non-Jewish patients are different and more diverse. In the present study, the ASPA gene was analysed in 22 unrelated non-Jewish patients with Canavan disease, and 24 different mutations were found. of these,14 are novel, including five missense mutations (E24G, D68A, D249V, C152W, H244R), two nonsense mutations (Q184X, E214X), three deletions (923delT, 33del13, 244delA), one insertion mutation (698insC), two sequence variations in one allele ([10T>G; 11insG]), an elimination of the stop codon (941A>G, TAG-->TGG, X314W), and one splice acceptor site mutation (IVS1 - 2A>T). The E24G mutation resulted in substitution of an invariable amino acid residue (Glu) in the first esterase catalytic domain consensus sequence. The IVS1 - 2A>T mutation caused the retention of 40 nucleotides of intron 1 upstream of exon 2. The results of transient expression of the mutant ASPA cDNA containing these mutations in COS-7 cells and assays for ASPA activity of patient fibroblasts indicated that these mutations were responsible for the enzyme deficiency. In addition, patients with the novel D249V mutation manifested clinically at birth and died early. Also, patients with certain other novel mutations, including C152W, E214X, X314W, and frameshift mutations in both alleles, developed clinical manifestations at an earlier age than in classical Canavan disease.
Resumo:
Background: The capacity for DNA repair is essential in maintaining cellular functions and homeostasis; however, this capacity can be altered based on DNA sequence variations in DNA repair genes, which may contribute to the onset of cancer. Many single-nucleotide polymorphisms (SNPs) in repair genes have been found to be associated with oral cancer. The aim of this study was to investigate the relationship between the presence of allelic variants Arg194Trp (rs:1799782) and Arg399Gln (rs: 25487) of XRCC1 gene and Thr241Met (rs: 861539) of XRCC3 gene and susceptibility to oral cancer. We also attempted to correlate the frequencies obtained for each of the SNPs to histopathological parameters. Methods: A case-control study was conducted with genomic DNA from 150 patients with oral squamous cell carcinomas and 150 controls. SNPs were genotyped by RFLP-PCR. Results: The presence of the polymorphic variants of the XRCC1 gene within codon 194 (OR 0.82, 95% CI: 0.44-1.51) and codon 399 (OR 0.94, 95% CI: 0.59-1.50) and within the XRCC3 gene (OR 0.72; 95% CI: 0.45-1.16) were not associated with an increased risk of oral cancer. A combinational analysis of SNPs in both genes indicated no association. The presence of the allelic variants of these two genes had no statistically significant effect on tumor differentiation, lymph node invasion or tumor size. Conclusions: These results suggest that allelic variants of XRCC1 and XRCC3 are not suitable markers for susceptibility to carcinomas of the oral cavity and are also not related to the later stages of such tumors. © 2012 John Wiley & Sons A/S.
Resumo:
Die Analyse tandem-repetitiver DNA-Sequenzen hat einen festen Platz als genetisches Typisierungsverfahren in den Breichen der stammesgeschichtlichen Untersuchung, der Verwandtschaftsanalyse und vor allem in der forensischen Spurenkunde, bei der es durch den Einsatz der Multiplex-PCR-Analyse von Short Tandem Repeat-Systemen (STR) zu einem Durchbruch bei der Aufklärung und sicheren Zuordnung von biologischen Tatortspuren kam. Bei der Sequenzierung des humanen Genoms liegt ein besonderes Augenmerk auf den genetisch polymorphen Sequenzvariationen im Genom, den SNPs (single nucleotide polymorphisms). Zwei ihrer Eigenschaften – das häufige Vorkommen innerhalb des humanen Genoms und ihre vergleichbar geringe Mutationsrate – machen sie zu besonders gut geeigneten Werkzeugen sowohl für die Forensik als auch für die Populationsgenetik.rnZum Ziel des EU-Projekts „SNPforID“, aus welchem die vorliegende Arbeit entstanden ist, wurde die Etablierung neuer Methoden zur validen Typisierung von SNPs in Multiplexverfahren erklärt. Die Berücksichtigung der Sensitivität bei der Untersuchung von Spuren sowie die statistische Aussagekraft in der forensischen Analyse standen dabei im Vordergrund. Hierfür wurden 52 autosomale SNPs ausgewählt und auf ihre maximale Individualisierungsstärke hin untersucht. Die Untersuchungen der ersten 23 selektierten Marker stellen den ersten Teil der vorliegenden Arbeit dar. Sie umfassen die Etablierung des Multiplexverfahrens und der SNaPshot™-Typisierungsmethode sowie ihre statistische Auswertung. Die Ergebnisse dieser Untersuchung sind ein Teil der darauf folgenden, in enger Zusammenarbeit der Partnerlaboratorien durchgeführten Studie der 52-SNP-Multiplexmethode. rnEbenfalls im Rahmen des Projekts und als Hauptziel der Dissertation erfolgten Etablierung und Evaluierung des auf der Microarray-Technologie basierenden Verfahrens der Einzelbasenverlängerung auf Glasobjektträgern. Ausgehend von einer begrenzten DNA-Menge wurde hierbei die Möglichkeit der simultanen Hybridisierung einer möglichst hohen Anzahl von SNP-Systemen untersucht. Die Auswahl der hierbei eingesetzten SNP-Marker erfolgte auf der Basis der Vorarbeiten, die für die Etablierung des 52-SNP-Multiplexes erfolgreich durchgeführt worden waren. rnAus einer Vielzahl von Methoden zur Genotypisierung von biallelischen Markern hebt sich das Assay in seiner Parallelität und der Einfachheit des experimentellen Ansatzes durch eine erhebliche Zeit- und Kostenersparnis ab. In der vorliegenden Arbeit wurde das „array of arrays“-Prinzip eingesetzt, um zur gleichen Zeit unter einheitlichen Versuchsbedingungen zwölf DNA-Proben auf einem Glasobjektträger zu typisieren. Auf der Basis von insgesamt 1419 typisierten Allelen von 33 Markern konnte die Validierung mit einem Typisierungserfolg von 86,75% abgeschlossen werden. Dabei wurden zusätzlich eine Reihe von Randbedingungen in Bezug auf das Sonden- und Primerdesign, die Hybridisierungsbedingungen sowie physikalische Parameter der laserinduzierten Fluoreszenzmessung der Signale ausgetestet und optimiert. rn
Resumo:
The majority of patients with acute myeloid leukemia (AML) still die of their disease, and novel therapeutic concepts are needed. Timely expression of the hematopoietic master regulator PU.1 is crucial for normal development of myeloid and lymphoid cells. Targeted disruption of an upstream regulatory element (URE) located several kb upstream in the PU.1 promoter decreases PU.1 expression thereby inducing AML in mice. In addition, suppression of PU.1 has been observed in specific subtypes of human AML. Here, we identified nuclear factor-kappaB (NF-kappaB) to activate PU.1 expression through a novel site within the URE. We found sequence variations of this particular NF-kappaB site in 4 of 120 AML patients. These variant NF-kappaB sequences failed to mediate activation of PU.1. Moreover, the synergistic activation of PU.1 together with CEBPB through these variant sequences was also lost. Finally, AML patients with such variant sequences had suppressed PU.1 mRNA expression. This study suggests that changes of a single base pair in a distal element critically affect the regulation of the tumor suppressor gene PU.1 thereby contributing to the development of AML.
Resumo:
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Resumo:
Antimicrobial peptide dendrimer H1 Leu8(Lys-Leu)4(Lys-Phe)2Lys-LysNH2 (Lys = branching lysine) was identified by screening a 6750-membered combinatorial library by the bead-diffusion assay. Sequence variations also revealed dendrimer bH1 Leu8(Dap-Leu)4(Dap-Phe)2Dap-LysNH2 (Dap = branching 2,3-diaminopropanoic acid) as a more potent analog. H1 and bH1 showed good antimicrobial activities mediated by membrane disruption (MIC = 2–4 μg mL−1 on Bacillus subtilis and Escherichia coli) but low hemolytic activity (MHC = 310 μg mL−1 respectively >2000 μg mL−1).
Resumo:
DMT1 (divalent metal-ion transporter 1) is a widely expressed metal-ion transporter that is vital for intestinal iron absorption and iron utilization by most cell types throughout the body, including erythroid precursors. Mutations in DMT1 cause severe microcytic anaemia in animal models. Four DMT1 isoforms that differ in their N- and C-termini arise from mRNA transcripts that vary both at their 5'-ends (starting in exon 1A or exon 1B) and at their 3'-ends giving rise to mRNAs containing (+) or lacking (-) the 3'-IRE (iron-responsive element) and resulting in altered C-terminal coding sequences. To determine whether these variations result in functional differences between isoforms, we explored the functional properties of each isoform using the voltage clamp and radiotracer assays in cRNA-injected Xenopus oocytes. 1A/IRE+-DMT1 mediated Fe2+-evoked currents that were saturable (K(0.5)(Fe) approximately 1-2 microM), temperature-dependent (Q10 approximately 2), H+-dependent (K(0.5)(H) approximately 1 muM) and voltage-dependent. 1A/IRE+-DMT1 exhibited the provisional substrate profile (ranked on currents) Cd2+, Co2+, Fe2+, Mn2+>Ni2+, V3+>>Pb2+. Zn2+ also evoked large currents; however, the zinc-evoked current was accounted for by H+ and Cl- conductances and was not associated with significant Zn2+ transport. 1B/IRE+-DMT1 exhibited the same substrate profile, Fe2+ affinity and dependence on the H+ electrochemical gradient. Each isoform mediated 55Fe2+ uptake and Fe2+-evoked currents at low extracellular pH. Whereas iron transport activity varied markedly between the four isoforms, the activity for each correlated with the density of anti-DMT1 immunostaining in the plasma membrane, and the turnover rate of the Fe2+ transport cycle did not differ between isoforms. Therefore all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency. Our results reveal that the N- and C-terminal sequence variations among the DMT1 isoforms do not alter DMT1 functional properties. We therefore propose that these variations serve as tissue-specific signals or cues to direct DMT1 to the appropriate subcellular compartments (e.g. in erythroid cells) or the plasma membrane (e.g. in intestine).
Resumo:
PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.
Resumo:
CONTRIBUTION OF ECTODOMAIN MUTATIONS IN EPIDERMAL GROWTH FACTOR RECEPTOR TO SIGNALING IN GLIOBLASTOMA MULTIFORME Publication No._________ Marta Rojas, M.S. Supervisory Professor: Oliver Bögler, Ph.D. The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a large tumor cohort and has cataloged genetic alterations involving primary sequence variations and copy number aberrations of genes involved in key signaling pathways in glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in epidermal growth factor receptor (EGFR), but the biological and clinical significance of these mutations is not well defined in the context of gliomas. In our study, we focused on understanding and defining the molecular mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic approaches to broadly analyze cell signaling, including antibody array and mass spectrometry-based methods, we found a differential spectrum of tyrosine phosphorylation across the EGFR ectodomain mutations that enabled us to stratify them into three main groups that correlate with either wild type EGFR (EGFR) or the long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both groups suggesting a continuum of behaviors along which different mutants fall. Surprisingly, no substantial differences were seen in activation of classical downstream signaling pathways such as Akt and S6 pathways between these classes of mutants. Importantly, we demonstrated that ectodomain mutations lead to differential tumor growth capabilities in both in vitro (anchorage independent colony formation) and in vivo conditions (xenografts). Our data from the biological characterization allowed us to categorize the mutants into three main groups: the first group typified by EGFRvIII are mutations with a more aggressive phenotype including R108K and A289T; a second group characterized by a less aggressive phenotype exemplified by EGFR and the T263P mutation; and a third group which shared characteristics from both groups and is exemplified by the mutation A289D. In addition, we treated cells overexpressing the mutants with various agents employed in the clinic including temozolomide, cisplatin and tarceva. We found that cells overexpressing the mutants in general displayed resistance to the treatments. Our findings yield insights that help with the molecular characterization of these mutants. In addition, our results from the drug studies might be valuable in explaining differential responses to specific treatments in GBM patients.
Resumo:
The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.