978 resultados para sensing system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high gains in performance predicted for optical immersion are difficult to achieve in practice due to total internal reflection at the lens/detector interface. By reducing the air gap at this interface optical tunneling becomes possible and the predicted gains can be realized in practical devices. Using this technique we have demonstrated large performance gains by optically immersing mid-infrared heterostructure InA1Sb LEDs and photodiodes using hypershperical germanium lenses. The development of an effective method of optical immersion that gives excellent optical coupling has produced a photodiode with a peak room temperature detectivity (D*) of 5.3 x 109 cmHz½W-1 at λpeak=5.4μm and a 40° field of view. A hyperspherically immersed LED showed a f-fold improvement in the external efficiency, and a 3-fold improvement in the directionality compared with a conventional planar LED for f/2 optical systems. The incorporation of these uncooled devices in a White cell produced a NO2 gas sensing system with 2 part-per-million sensitivity, with an LED drive current of <5mA. These results represent a significant advance in the use of solid state devices for portable gas sensing systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.

This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.

Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.

Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A monitorização ambiental é essencial para a tomada de decisões tanto na ciência como na indústria. Em particular, uma vez que a água é essencial à vida e a superfície da Terra é composta principalmente por água, a monitorização do clima e dos parâmetros relacionados com a água em ecossistemas sensíveis, tais como oceanos, lagoas, rios e lagos, é de extrema importância. Um dos métodos mais comuns para monitorar a água é implantar bóias. O presente trabalho está integrado num projeto mais amplo, com o objetivo de projectar e desenvolver uma bóia autónoma para a investigação científica com dois modos de funcionamento: (i) monitorização ambiental ; e (ii) baliza ativa de regata. Assim, a bóia tem duas aplicações principais: a coleta e armazenamento de dados e a assistência a regatas de veleiros autónomos. O projeto arrancou há dois anos com um grupo de quatro estudantes internacionais. Eles projetaram e construíram a estrutura física, compraram e montaram o sistema de ancoragem da bóia e escolherem a maioria dos componentes electrónicos para o sistema geral de controlo e medição. Este ano, durante o primeiro semestre, dois estudantes belgas - Jeroen Vervenne e Hendrick Verschelde – trabalharam nos subsistemas de recolha e armazenamento de dados (unidade de controlo escrava) e de telemetria e configuração (unidade de controlo mestre) assim como definiram o protocolo de comunicação da aplicação. O trabalho desta tese continua o desenvolvimento do subsistema de telemetria e configuração. Este subsistema _e responsável pela configuração do modo de funcionamento e dos sensores assim como pela comunicação com a estacão de base (controlo ambiental), barcos (baliza ativa de regata) e com o subsistema de recolha e armazenamento de dados. O desenvolvimento do subsistema de recolha e armazenamento de dados, que coleta e armazena num cartão SD os dados dos sensores selecionados, prossegue com outro estudante belga - Mathias van Flieberge. O objetivo desta tese é, por um lado, implementar o subsistema de telemetria e de configuração na unidade de controle mestre e, por outro lado, refinar e implementar, conjuntamente com Mathias van Flieberge, o protocolo de nível de aplicação projetado. Em particular, a unidade de controlo mestre deve processar e atribuir prioridades às mensagens recebidas da estacão base, solicitar dados à unidade de controlo escrava e difundir mensagens com informação de posição e condições de vento e água no modo de regata. Enquanto que a comunicação entre a unidade de controlo mestre e a estacão base e a unidade de controlo mestre e os barcos é sem fios, a unidade de controlo mestre e a unidade de controlo escrava comunicam através de uma ligação série. A bóia tem atualmente duas limitações: (i) a carga máxima é de 40 kg; e (ii) apenas pode ser utilizada em rios ou próximo da costa dada à limitação de distância imposta pela técnica de comunicação sem fios escolhida.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aeromonas hydrophila és un bacil gram-negatiu, patogen oportunista d’animal i humans. La patogènesi d’A. Hydrophila és multifactorial. A fi d'identificar gens implicats en la virulència de la soca PPD134/91 d’A. hydrophila, vam realitzar experiments de substracció gènica, que van dur a la detecció de 22 fragments d’ADN que codificaven 19 potencials factors de virulencia, incloent un gen que codificava una proteïna de sistema de secreció de tipus III (T3SS). La importància creixent del T3SS en la patogènesi de diversos bacteris, ens va dur a identificar i analitzar l'agrupació gènica del T3SS de les soques AH-1 i AH-3 d’A. hydrophila. La inactivació dels gens de T3SS aopB i aopD d’A. hydrophila AH-1, i ascV d’A. hydrophila AH-3, comporta una disminució de la citotoxicitat, un increment de la fagocitosi, i una reducció de la virulència en diferents models animals. Aquests resultats demostren que el T3SS és necessari per a la patogenicitat. També vam clonar i seqüenciar una ADP-ribosiltransferasa (AexT) a la soca AH-3 d’A. hydrophila, i vam demostrar que aquesta toxina és translocada via el T3SS, sistema que al seu torn sembla ser induïble in vitro en condicions de depleció de calci. El mutant en el gen aexT de la soca AH-3 d’A. hydrophila va mostrar una lleugera reducció de la virulència, assajada amb diferents mètodes. Mitjançant l'ús de diferents sondes d’ADN, vam determinar la presència del T3SS en soques tant clíniques com ambientals de diferents espècies del gènere Aeromonas: A. hydrophila, A. veronii, i A. caviae, i la codistribució d'aquesta agrupació gènica i el gen aexT. Finalment, amb la finalitat d'estudiar la regulació transcripcional de l'agrupació gènica de T3SS i de l’efector AexT A. hydrophila AH-3, vam aïllar els promotors predits per l’operó aopN-aopD i el gen aexT, i els vam fusionar amb el gen reporter gfp (Green Fluorescence Protein). A més, vam demostrar que l'expressió d'ambdós promotors depèn de diferents components bacterians, com per exemple el sistema de dos components PhoP/PhoQ, el sistema de quorum sensing AhyI/AhyR, o el complex piruvat deshidrogenasa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Satellite remote sensing imagery is used for forestry, conservation and environmental applications, but insufficient spatial resolution, and, in particular, unavailability of images at the precise timing required for a given application, often prevent achieving a fully operational stage. Airborne remote sensing has the advantage of custom-tuned sensors, resolution and timing, but its price prevents using it as a routine technique for the mentioned fields. Some Unmanned Aerial Vehicles might provide a “third way” solution as low-cost techniques for acquiring remotely sensed information, under close control of the end-user, albeit at the expense of lower quality instrumentation and instability. This report evaluates a light remote sensing system based on a remotely-controlled mini-UAV (ATMOS-3) equipped with a color infra-red camera (VEGCAM-1) designed and operated by CATUAV. We conducted a testing mission over a Mediterranean landscape dominated by an evergreen woodland of Aleppo pine (Pinus halepensis) and (Holm) oak (Quercus ilex) in the Montseny National Park (Catalonia, NE Spain). We took advantage of state-of-the-art ortho-rectified digital aerial imagery (acquired by the Institut Cartogràfic de Catalunya over the area during the previous year) and used it as quality reference. In particular, we paid attention to: 1) Operationality of flight and image acquisition according to a previously defined plan; 2) Radiometric and geometric quality of the images; and 3) Operational use of the images in the context of applications. We conclude that the system has achieved an operational stage regarding flight activities, although with meteorological limits set by wind speed and turbulence. Appropriate landing areas can be sometimes limiting also, but the system is able to land on small and relatively rough terrains such as patches of grassland or short matorral, and we have operated the UAV as far as 7 km from the control unit. Radiometric quality is sufficient for interactive analysis, but probably insufficient for automated processing. A forthcoming camera is supposed to greatly improve radiometric quality and consistency. Conventional GPS positioning through time synchronization provides coarse orientation of the images, with no roll information.