990 resultados para semiconducting silicon carbide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for our work is to identify a space for silicon carbide (SiC) devices in the silicon (Si) world. This paper presents a detailed experimental investigation of the switching behaviour of silicon and silicon carbide transistors (a JFET and a cascode device comprising a Si-MOSFET and a SiC-JFET). The experimental method is based on a clamped inductive load chopper circuit that puts considerable stress on the device and increases the transient power dissipation. A precise comparison of switching behaviour of Si and SiC devices on similar terms is the novelty of our work. The cascode is found to be an attractive fast switching device, capable of operating in two different configurations whose switching equivalent circuits are proposed here. The effect of limited dv/dt of the Si-MOSFET on the switching of the SiC-JFET in a cascode is also critically analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the PSpice model of SiC-JFET element inside a SiCED cascode device. The device model parameters are extracted from the I-V and C-V characterization curves. In order to validate the model, an inductive test rig circuit is designed and tested. The switching loss is estimated both using oscilloscope and calorimeter. These results are found to be in good agreement with the simulated results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide (SiC) based MOS capacitor devices are used for gas sensing in high temperature and chemically reactive environments. A SiC MOS capacitor structure used as hydrogen sensor is defined and simulated. The effects of hydrogen concentration, temperature and interface traps on C-V characteristics were analysed. A comparison between structures with different oxide layer types (SiO2, TiO2 and ZnO) and thicknesses (50..10nm) was conducted. The TiO2 based structure has better performance than the SiO2 and ZnO structures. Also, the performance of the SiC MOS capacitor increases at thinner oxide layers. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon Carbide Bipolar Junction Transistors require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200V/40A SiC BJT in a DC-DC boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 63 %. The total reduction of the driver consumption is 2816 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide (SiC) bipolar junction transistors (BJTs) require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200-V/40-A SiC BJT in a dc-dc boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 60%. The total reduction of the driver consumption is 3459 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The defect creation at low energy events was studied using density functional theory molecular dynamics simulations in silicon carbide nanotubes, and the displacement threshold energies determined exhibit a dependence on sizes, which decrease with decreasing diameter of the nanotubes. The Stone-Wales (SW) defect, which is a common defect configurations induced through irradiation in nanotubes, has also been investigated, and the formation energies of the SW defects increase with increasing diameter of the nanotubes. The mean threshold energies were found to be 23 and 18 eV for Si and C in armchair (5,5) nanotubes. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3238307]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the preparation and characterization of hydrogenated amorphous silicon carbide films prepared by H-2 diluted silane-methane plasma. Carbon-rich a-SiC:H film with band gap of up to 3.3 eV has been achieved. IR and UV Vis spectra were employed to characterize the chemical bonding and optical properties of as-prepared films. It is shown that hydrogen dilution is crucial in obtaining these wide band gap carbon-rich films. Raman and PL measurements were performed to probe the microstructure and photoelectronic properties of these films before and after annealing. Films with intermediate carbon concentration seem more defective and exhibit stronger photoluminescence and subband absorption than others. Films with different compositions exhibit different annealing behaviours. For silicon rich and carbon rich films, high temperature annealing results in the formation of silicon crystallites and graphite clusters, respectively. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.