76 resultados para segmentaci
Resumo:
Els objectius del projecte són: realitzar un intèrpret de comandes en VAL3 que rebi les ordres a través d’una connexió TCP/IP; realitzar una toolbox de Matlab per enviar diferents ordres mitjançant una connexió TCP/IP; adquirir i processar mitjançant Matlab imatges de la càmera en temps real i detectar la posició d’objectes artificials mitjançant la segmentació per color i dissenyar i realitzar una aplicació amb Matlab que reculli peces detectades amb la càmera. L’abast del projecte inclou: l’estudi del llenguatge de programació VAL3 i disseny de l’ intèrpret de comandes, l’estudi de les llibreries de Matlab per comunicació mitjançant TCP/IP, per l’adquisició d’imatges, pel processament d’imatges i per la programació en C; el disseny de la aplicació recol·lectora de peces i la implementació de: un intèrpret de comandes en VAL3, la toolbox pel control del robot STAUBLI en Matlab i la aplicació recol·lectora de peces mitjançant el processament d’imatges en temps real també en Matlab
Convergència mediàtica digital: el consum de continguts i l'ús de nous mitjans per dones a Catalunya
Resumo:
Des de fa 20 anys, el sector audiovisual viu una important transformació, tant de l’oferta com del consum, en el marc de la convergència digital. La convergència anuncia la coexistència dels nous mitjans digitals amb l’apogeu d’una cultura participativa, protagonitzada per comunitats d’usuaris amb una activitat quasi frenètica (Jenkins,2008). Noves modalitats de treball cooperatiu que permeten la creació i recreació grupal de continguts, i la creació de comunitats d’usuaris que utilitzen i reutilitzen les noves modalitats de serveis. En aquest context, augmenta la segmentació, la fragmentació i l’abonament dels usuaris (Tous, 2009), perquè la tipologia de les plataformes de continguts ha variat de manera significativa, s’han incorporat els dispositius mòbils i s’han diversificat i sofisticat les ofertes a Internet.
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
There are a number of morphological analysers for Polish. Most of these, however, are non-free resources. What is more, different analysers employ different tagsets and tokenisation strategies. This situation calls for a simpleand universal framework to join different sources of morphological information, including the existing resources as well as user-provided dictionaries. We present such a configurable framework that allows to write simple configuration files that define tokenisation strategies and the behaviour of morphologicalanalysers, including simple tagset conversion.
Resumo:
Treball Final de Carrera ( TFC ) consistent en l'anàlisi de diferents tipus d'estratègies que les empreses poden aplicar centrant-se en les idees de Michael Porter i el desenvolupament d'aquestes idees per part de diferents professionals. El TFC està dividit en dos blocs, un de teòric i un de pràctic. El primer bloc consisteix en l'anàlisi dels diferents tipus d'estratègies derivades de les idees de Michael Porter. En aquest primer bloc, hem analitzat com a través del model de les cinc forces, Porter va arribar a les estratègies genèriques. Després hem analitzat les tres estratègies genèriques conjuntament amb l'estratègia híbrida i amb l'Estratègia de l'Oceà Blau. El segon bloc està format per diversos casos pràctics d'empreses que han aconseguit l'èxit durant l'actual període de crisi en els diferents sectors de l'economia. Aquestes empreses són Yoigo com a exemple de baix cost , Starbucks com implementació d'una estratègia de diferenciació i Ryan Air exemplificant una estratègia de segmentació enfocada als baixos costos. Finalment, hem analitzat a Toyota degut a la seva estratègia híbrida i Graphenea com una companyia que implementa Estratègia de l'Oceà Blau. Totes aquestes companyies han aconseguit l'èxit durant l'actual període de crisi. El motiu és que aquestes empreses van escollir un tipus d'estratègia d'acord amb l'estructura de la indústria en la qual operen. No obstant això, la implementació d'aquestes estratègies no assegura resultats d'èxit. L'adequada aplicació d'aquestes estratègies suposa per a les empreses una demostració de que aconseguir l'èxit durant períodes de recessió econòmica és possible, vinculat a una bona gestió estratègica.
Resumo:
En aquest projecte fem un estudi de diferents mètodes per a la segmentació i extracció de línies de mapes de metro com a suport per a daltònics. Hem aplicat dos mètodes amb intervenció de l’usuari i cinc mètodes automàtics on fem servir K-means per a la segmentació de color i Hough per a l’extracció de línies. Dels mètodes amb intervenció obtenim millors resultats amb un mètode d’assignació aproximada del color, i entre els autoàatics tenim com a millor una solució ad-hoc sense paràmetres aplicada sobre l’espai RGB. D’acord amb els resultats experimentals, aquests mètodes ens permeten fer una bona segmentació i extracció de les línies de metro.
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
El càncer de mama és una de les causes de més mortalitat entreles dones dels països desenvolupats. És tractat d'una maneramés eficient quan es fa una detecció precoç, on les tècniques d'imatge són molt importants. Una de les tècniques d'imatge més utilitzades després dels raigs-X són els ultrasons. A l'hora de fer un processat d'imatges d'ultrasò, els experts en aquest camp es troben amb una sèrie de limitacions en el moment d'utilitzar uns filtrats per les imatges, quan es fa ús de determinades eines. Una d'aquestes limitacions consisteix en la falta d'interactivitat que aquestes ens ofereixen. Per tal de solventar aquestes limitacions, s'ha desenvolupat una eina interactiva que permet explorar el mapa de paràmetres visualitzant el resultat del filtrat en temps real, d'una manera dinàmica i intuïtiva. Aquesta eina s'ha desenvolupat dins l'entorn de visualització d'imatge mèdica MeVisLab. El MeVisLab és un entorn molt potent i modular pel desenvolupament d'algorismes de processat d'imatges, visualització i mètodes d'interacció, especialment enfocats a la imatge mèdica. A més del processament bàsic d'imatges i de mòduls de visualització, inclou algorismes avançats de segmentació, registre i moltes análisis morfològiques i funcionals de les imatges.S'ha dut a terme un experiment amb quatre experts que, utilitzantl'eina desenvolupada, han escollit els paràmetres que creien adientsper al filtrat d'una sèrie d'imatges d'ultrasò. En aquest experiments'han utilitzat uns filtres que l'entorn MeVisLab ja té implementats:el Bilateral Filter, l'Anisotropic Difusion i una combinació d'un filtrede Mediana i un de Mitjana.Amb l'experiment realitzat, s'ha fet un estudi dels paràmetres capturats i s'han proposat una sèrie d'estimadors que seran favorables en la majoria dels casos per dur a terme el preprocessat d'imatges d'ultrasò
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms