962 resultados para seasonal patterns


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many male temperate zone passerines show a marked peak of singing activity before sunrise. The two main functions of this so-called dawn chorus are mate attraction and territory defence. We examined how seasonal patterns of different dawn song characteristics were related to mating status and to the breeding cycle of females in the common nightingale, Luscinia megarhynchos. We investigated two measures of song output: song rate and percentage performance time. We also calculated the proportion of 'whistle songs', a song category that is thought to be important in female choice. We predicted that if the main function of dawn singing in nightingales is to attract a social mate, then mated males should change their dawn singing behaviour after pair formation. In contrast, if dawn singing is mainly used in territory defence, we expected no difference in song traits between mated and unmated males throughout the season. We found that song rate and the proportion of whistle songs were low at the beginning of the season and did not predict future mating status. After arrival of females, all measures of dawn song performance remained largely constant throughout the breeding season, and we did not find significant differences in the seasonal variation between mated and unmated males. These findings are consistent with the hypothesis that song at dawn is important to defend a territory throughout the breeding season. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The general objective of my study was to monitor proximate causes and seasonal patterns of hatching asynchrony and chick survival in the Ring-billed Gull (Larus delawarensis). Two different plots were set up at a Ring-billed Gull colony near Port Colborne, Ontario in the summer of 1992. One group was from 'peak' nesting pairs (clutches initiated between 15 April and 1 May); a second group was from 'late' nesting pairs (clutches initiated between 9 .. 22 May). Despite equal intra-clutch egg laying intervals between the peak and late periods, intra-clutch hatching intervals lengthened as the season progressed (ie. hatching became more asynchronous). Clutches from both periods were monitored for nocturnal attendance and brood patch development of parents was monitored during the egg laying period. Late nesters were characterized by an absence of nocturnal desertion, substantial brood patch defeatheration at clutch initiation and a reduction in the number of chicks fledged per pair. Chick survival to 25 days (taken as fledging) reflected patterns of chick mass at brood completion and five days post-brood completion, in peak clutches. In late clutches, survival was poor for all chicks and, was partially independent of hatching order, due in part to stochastic events such as Herring Gull predation and adverse weather. In both the peak and late periods, last-hatched C-chicks realized the poorest survival to fledging among brood mates. An artificial hatching pattern (manipulated synchrony) and an artificial hatching order were created, in three-chick broods, through a series of egg exchanges. In peak and late clutches manipulated to hatch synchronously (s; 24 h): C-chick survival to fledging did not differ from the survival of A- and B-chicks, in the peak period. In the late period, the survival of C-chicks was significantly lower than that of A-chicks. In peak clutches manipulated such that chicks from last-laid eggs (C-chicks) hatched 24 h - 48 h ahead of the A- and B- chicks, C-chick survival was greater than in controls. Within those broods, C-chicks survived better on average than both A- and B- chicks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Communication contributes to mediate the interactions between plants and the animals that disperse their genes. As yet, seasonal patterns in plant-animal communication are unknown, even though many habitats display pronounced seasonality e.g. when leaves senescence. We thus hypothesized that the contrast between fruit displays and their background vary throughout the year in a seasonal habitat. If this variation is adaptive, we predicted higher contrasts between fruits and foliage during the fruiting season in a cerrado-savanna vegetation, southeastern Brazil. Based on a six-year data base of fruit ripening and a one-year data set of fruit biomass, we used reflectance measurements and contrast analysis to show that fruits with distinct colors differed in the beginning of ripening and the peak of fruit biomass. Black, and particularly red fruits, that have a high contrast against the leaf background, were highly seasonal, peaking in the wet season. Multicolored and yellow fruits were less seasonal, not limited to one season, with a bimodal pattern for yellow ones, represented by two peaks, one in each season. We further supported the hypothesis that seasonal changes in fruit contrasts can be adaptive because fruits contrasted more strongly against their own foliage in the wet season, when most fruits are ripe. Hence, the seasonal variation in fruit colors observed in the cerrado-savanna may be, at least partly, explicable as an adaptation to ensure high conspicuousness to seed dispersers. © 2013 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macroalgal seasonality was studied monthly in a second-order stream in the north-west of São Paulo State, S.E. Brazil. Seasonal variation was based on frequency and percentage cover. Seven species were found during the study period, three of which ('Chantransia' stage of Sirodotia delicatula, Homoeothrix juliana and Klebsormidium subtile) were encountered throughout the year and showed well-defined seasonal patterns as well as the highest value of frequency and percentage cover. 'Chantransia' and H. juliana dominated in summer and fall, while for K. subtile winter was the most favourable period. The remaining species (Oscillatoria agardhii, Microcoleus subtorulosus, Oedogonium sp. and Chaetophora elegans) had no clear seasonal pattern, in addition to their low values of frequency and percentage cover. Individually, K. subtile correlated with higher number of physical and chemical variables (oxygen, pH, precipitation, temperature, daylength, conductance and turbidity) than 'Chantransia' and H. juliana (discharge and depth). Principal component analyses revealed that no single variable was responsible for the macroalgal seasonal dynamics. The variables most closely related to seasonal variation of the macroalgal community were daylength, precipitation, discharge, turbidity and dissolved oxygen. Precipitation and flow were suggested as key factors in determining seasonality of the macroalgae. © 1991 Kluwer Academic Publishers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Five years (1979-1983) of Coastal Zone Color Scanner satellite ocean color data are used to examine seasonal patterns of phytoplankton pigment concentration along the Chilean coast from 20 degrees S to 45 degrees S. Four kilometer resolution, 2-4 day composites document the presence of filaments of elevated pigment concentration extending offshore throughout the study area, with maximum offshore extension at higher latitudes. In three years, 1979, 1981, and 1983, sufficient data exist in monthly composites to allow recreation of portions of the seasonal cycle. Data in 1979 are the most complete. Near-shore concentrations and cross-shelf extension of pigment concentrations in 1979 are maximum in austral winter throughout the study area and minimum in summer. Available data from 1981 and 1983 are consistent with this temporal pattern but with concentrations approximately double those of 1979. Seasonal, spatial patterns within 10 km of shore and 50 km offshore indicate a latitudinal discontinuity both in absolute concentration and in the magnitude of the seasonal cycle at approximately 33 degrees S in both 1979 and in the climatological time series. The discontinuity is strongest ill fall-winter and weakest in summer. South of this latitude, concentrations are relatively high (2-3 mg m(-3) in 1979), a strong seasonal cycle is present, and patterns 50 km offshore are correlated with those within 10 km of shore. North of 33 degrees S, concentrations are < 1.5 mg m(-3) (in 1979), and the seasonal cycle within 10 km of shore is present but much weaker and less obviously correlated with that 50 km offshore. The seasonal cycle of pigment concentrations is 180 degrees out of phase with monthly averaged upwelling favorable winds. Noncoincident Pathfinder sea surface temperature data show that over most latitudes, coastal low surface temperatures lag wind forcing by 1-2 months, but these too are out of phase with the pigment seasonal cycle. These data point to control of pigment patterns along the Chilean coast by the interaction of upwelling with circulation patterns unconnected to local wind forcing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In 2002, 2003 and 2004, we took macoinvertebrate samples on a total of 36 occasions at the Badacsony bay of Lake Balaton. Our sampling site was characterised by areas of open water (in 2003 and 2004 full of reed-grass) as well as by areas covered by common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia). Samples were taken both from water body and benthic ooze by use of a stiff hand net. We have gained our data from processing 208 individual samples. We took samples frequently from early spring until late autumn for a deeper understanding of the processes of seasonal dynamics. The main seasonal patterns and temporal changes of diversity were described. We constructed a weather-dependent simulation model of the processes of seasonal dynamics in the interest of a possible further utilization of our data in climate change research. We described the total number of individuals, biovolume and diversity of all macroinvertebrate species with a single index and used the temporal trends of this index for simulation modelling. Our discrete deterministic model includes only the impact of temperature, other interactions might only appear concealed. Running the model for different climate change scenarios it became possible to estimate conditions for the 2070-2100 period. The results, however, should be treated very prudently not only because our model is very simple but also because the scenarios are the results of different models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. ^ High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, δ 15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM δ 15N values ranged on a quarterly basis by 7‰, while δ 13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amphibian populations are declining even in pristine areas in many parts of the world, and in the Neotropics most such enigmatic amphibian declines have occurred in mid- to high-elevation sites. However, amphibian populations have also declined at La Selva Biological Station in the lowlands of Costa Rica, and similar declines in populations of lizards have occurred at the site as well. To set the stage for describing amphibian declines at La Selva, I thoroughly review knowledge of amphibian decline and amphibian conservation in Central America: I describe general patterns in biodiversity, evaluate major patterns in and ecological correlates of threat status, review trends in basic and applied conservation literature, and recommend directions for future research. I then synthesize data on population densities of amphibians, as well as ecologically similar reptiles, over a 35-year periods using quantitative datasets from a range of studies. This synthesis identifies assemblage-wide declines of approximately 75% for both amphibians and reptiles between 1970 and 2005. Because these declines defy patterns most commonly reported in the Neotropics, it is difficult to assess causality evoking known processes associated with enigmatic decline events. I conduct a 12-month pathogen surveillance program to evaluate infection of frogs by the amphibian chytrid fungus, an emerging pathogen linked to decline events worldwide Although lowland forests are generally believed to be too warm for presence or adverse population effects of chytridiomycosis, I present evidence for seasonal patterns in infection prevalence with highest prevalence in the coolest parts of the year. Finally, I conducted a 16-month field experiment to explore the role of changes to dynamics of leaf litter, a critical resource for both frogs and lizards. Population responses by frogs and lizards indicate that litter regulates population densities of frogs and lizards, particularly those species with the highest decline rate. My work illustrates that sites that are assumed to be pristine are likely impacted by a variety of novel stressors, and that even fauna within protected areas may be suffering unexpected declines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.