936 resultados para search engines
Resumo:
In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.
Resumo:
In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.
Digital Debris of Internet Art: An Allegorical and Entropic Resistance to the Epistemology of Search
Resumo:
This Ph.D., by thesis, proposes a speculative lens to read Internet Art via the concept of digital debris. In order to do so, the research explores the idea of digital debris in Internet Art from 1993 to 2011 in a series of nine case studies. Here, digital debris are understood as words typed in search engines and which then disappear; bits of obsolete codes which are lingering on the Internet, abandoned website, broken links or pieces of ephemeral information circulating on the Internet and which are used as a material by practitioners. In this context, the thesis asks what are digital debris? The thesis argues that the digital debris of Internet Art represent an allegorical and entropic resistance to the what Art Historian David Joselit calls the Epistemology of Search. The ambition of the research is to develop a language in-between the agency of the artist and the autonomy of the algorithm, as a way of introducing Internet Art to a pluridisciplinary audience, hence the presence of the comparative studies unfolding throughout the thesis, between Internet Art and pionners in the recycling of waste in art, the use of instructions as a medium and the programming of poetry. While many anthropological and ethnographical studies are concerned with the material object of the computer as debris once it becomes obsolete, very few studies have analysed waste as discarded data. The research shifts the focus from an industrial production of digital debris (such as pieces of hardware) to obsolete pieces of information in art practice. The research demonstrates that illustrations of such considerations can be found, for instance, in Cory Arcangel’s work Data Diaries (2001) where QuickTime files are stolen, disassembled, and then re-used in new displays. The thesis also looks at Jodi’s approach in Jodi.org (1993) and Asdfg (1998), where websites and hyperlinks are detourned, deconstructed, and presented in abstract collages that reveals the architecture of the Internet. The research starts in a typological manner and classifies the pieces of Internet Art according to the structure at play in the work. Indeed if some online works dealing with discarded documents offer a self-contained and closed system, others nurture the idea of openness and unpredictability. The thesis foregrounds the ideas generated through the artworks and interprets how those latter are visually constructed and displayed. Not only does the research questions the status of digital debris once they are incorporated into art practice but it also examine the method according to which they are retrieved, manipulated and displayed to submit that digital debris of Internet Art are the result of both semantic and automated processes, rendering them both an object of discourse and a technical reality. Finally, in order to frame the serendipity and process-based nature of the digital debris, the Ph.D. concludes that digital debris are entropic . In other words that they are items of language to-be, paradoxically locked in a constant state of realisation.
Resumo:
This study examines the efficiency of search engine advertising strategies employed by firms. The research setting is the online retailing industry, which is characterized by extensive use of Web technologies and high competition for market share and profitability. For Internet retailers, search engines are increasingly serving as an information gateway for many decision-making tasks. In particular, Search engine advertising (SEA) has opened a new marketing channel for retailers to attract new customers and improve their performance. In addition to natural (organic) search marketing strategies, search engine advertisers compete for top advertisement slots provided by search brokers such as Google and Yahoo! through keyword auctions. The rationale being that greater visibility on a search engine during a keyword search will capture customers' interest in a business and its product or service offerings. Search engines account for most online activities today. Compared with the slow growth of traditional marketing channels, online search volumes continue to grow at a steady rate. According to the Search Engine Marketing Professional Organization, spending on search engine marketing by North American firms in 2008 was estimated at $13.5 billion. Despite the significant role SEA plays in Web retailing, scholarly research on the topic is limited. Prior studies in SEA have focused on search engine auction mechanism design. In contrast, research on the business value of SEA has been limited by the lack of empirical data on search advertising practices. Recent advances in search and retail technologies have created datarich environments that enable new research opportunities at the interface of marketing and information technology. This research uses extensive data from Web retailing and Google-based search advertising and evaluates Web retailers' use of resources, search advertising techniques, and other relevant factors that contribute to business performance across different metrics. The methods used include Data Envelopment Analysis (DEA), data mining, and multivariate statistics. This research contributes to empirical research by analyzing several Web retail firms in different industry sectors and product categories. One of the key findings is that the dynamics of sponsored search advertising vary between multi-channel and Web-only retailers. While the key performance metrics for multi-channel retailers include measures such as online sales, conversion rate (CR), c1ick-through-rate (CTR), and impressions, the key performance metrics for Web-only retailers focus on organic and sponsored ad ranks. These results provide a useful contribution to our organizational level understanding of search engine advertising strategies, both for multi-channel and Web-only retailers. These results also contribute to current knowledge in technology-driven marketing strategies and provide managers with a better understanding of sponsored search advertising and its impact on various performance metrics in Web retailing.
Resumo:
Given the significant growth of the Internet in recent years, marketers have been striving for new techniques and strategies to prosper in the online world. Statistically, search engines have been the most dominant channels of Internet marketing in recent years. However, the mechanics of advertising in such a market place has created a challenging environment for marketers to position their ads among their competitors. This study uses a unique cross-sectional dataset of the top 500 Internet retailers in North America and hierarchical multiple regression analysis to empirically investigate the effect of keyword competition on the relationship between ad position and its determinants in the sponsored search market. To this end, the study utilizes the literature in consumer search behavior, keyword auction mechanism design, and search advertising performance as the theoretical foundation. This study is the first of its kind to examine the sponsored search market characteristics in a cross-sectional setting where the level of keyword competition is explicitly captured in terms of the number of Internet retailers competing for similar keywords. Internet retailing provides an appropriate setting for this study given the high-stake battle for market share and intense competition for keywords in the sponsored search market place. The findings of this study indicate that bid values and ad relevancy metrics as well as their interaction affect the position of ads on the search engine result pages (SERPs). These results confirm some of the findings from previous studies that examined sponsored search advertising performance at a keyword level. Furthermore, the study finds that the position of ads for web-only retailers is dependent on bid values and ad relevancy metrics, whereas, multi-channel retailers are more reliant on their bid values. This difference between web-only and multi-channel retailers is also observed in the moderating effect of keyword competition on the relationships between ad position and its key determinants. Specifically, this study finds that keyword competition has significant moderating effects only for multi-channel retailers.
Resumo:
Search has become a hot topic in Internet computing, with rival search engines battling to become the de facto Web portal, harnessing search algorithms to wade through information on a scale undreamed of by early information retrieval (IR) pioneers. This article examines how search has matured from its roots in specialized IR systems to become a key foundation of the Web. The authors describe new challenges posed by the Web's scale, and show how search is changing the nature of the Web as much as the Web has changed the nature of search
Resumo:
This study examines the evolution of prices in markets with Internet price-comparison search engines. The empirical study analyzes laboratory data of prices available to informed consumers, for two industry sizes and two conditions on the sample (complete and incomplete). Distributions are typically bimodal. One of the two modes of distribution, corresponding to monopoly pricing, tends to attract such pricing strategies increasingly over time. The second one, corresponding to interior pricing, follows a decreasing trend. Monopoly pricing can serve as a means of insurance against more competitive (but riskier) behavior. In fact, experimental subjects who initially earn low profits due to interior pricing are more likely to switch to monopoly pricing than subjects who experience good returns from the start.
Resumo:
This article is concerned with the liability of search engines for algorithmically produced search suggestions, such as through Google’s ‘autocomplete’ function. Liability in this context may arise when automatically generated associations have an offensive or defamatory meaning, or may even induce infringement of intellectual property rights. The increasing number of cases that have been brought before courts all over the world puts forward questions on the conflict of fundamental freedoms of speech and access to information on the one hand, and personality rights of individuals— under a broader right of informational self-determination—on the other. In the light of the recent judgment of the Court of Justice of the European Union (EU) in Google Spain v AEPD, this article concludes that many requests for removal of suggestions including private individuals’ information will be successful on the basis of EU data protection law, even absent prejudice to the person concerned.
Resumo:
Each year search engines like Google, Bing and Yahoo, complete trillions of search queries online. Students are especially dependent on these search tools because of their popularity, convenience and accessibility. However, what students are unaware of, by choice or naiveté is the amount of personal information that is collected during each search session, how that data is used and who is interested in their online behavior profile. Privacy policies are frequently updated in favor of the search companies but are lengthy and often are perused briefly or ignored entirely with little thought about how personal web habits are being exploited for analytics and marketing. As an Information Literacy instructor, and a member of the Electronic Frontier Foundation, I believe in the importance of educating college students and web users in general that they have a right to privacy online. Class discussions on the topic of web privacy have yielded an interesting perspective on internet search usage. Students are unaware of how their online behavior is recorded and have consistently expressed their hesitancy to use tools that disguise or delete their IP address because of the stigma that it may imply they have something to hide or are engaging in illegal activity. Additionally, students fear they will have to surrender the convenience of uber connectivity in their applications to maintain their privacy. The purpose of this lightning presentation is to provide educators with a lesson plan highlighting and simplifying the privacy terms for the three major search engines, Google, Bing and Yahoo. This presentation focuses on what data these search engines collect about users, how that data is used and alternative search solutions, like DuckDuckGo, for increased privacy. Students will directly benefit from this lesson because informed internet users can protect their data, feel safer online and become more effective web searchers.
Resumo:
Models are becoming increasingly important in the software development process. As a consequence, the number of models being used is increasing, and so is the need for efficient mechanisms to search them. Various existing search engines could be used for this purpose, but they lack features to properly search models, mainly because they are strongly focused on text-based search. This paper presents Moogle, a model search engine that uses metamodeling information to create richer search indexes and to allow more complex queries to be performed. The paper also presents the results of an evaluation of Moogle, which showed that the metamodel information improves the accuracy of the search.
Resumo:
For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.
Resumo:
Search engines sometimes apply the search on the full text of documents or web-pages; but sometimes they can apply the search on selected parts of the documents only, e.g. their titles. Full-text search may consume a lot of computing resources and time. It may be possible to save resources by applying the search on the titles of documents only, assuming that a title of a document provides a concise representation of its content. We tested this assumption using Google search engine. We ran search queries that have been defined by users, distinguishing between two types of queries/users: queries of users who are familiar with the area of the search, and queries of users who are not familiar with the area of the search. We found that searches which use titles provide similar and sometimes even (slightly) better results compared to searches which use the full-text. These results hold for both types of queries/users. Moreover, we found an advantage in title-search when searching in unfamiliar areas because the general terms used in queries in unfamiliar areas match better with general terms which tend to be used in document titles.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
The design of interfaces to facilitate user search has become critical for search engines, ecommercesites, and intranets. This study investigated the use of targeted instructional hints to improve search by measuring the quantitative effects of users' performance and satisfaction. The effects of syntactic, semantic and exemplar search hints on user behavior were evaluated in an empirical investigation using naturalistic scenarios. Combining the three search hint components, each with two levels of intensity, in a factorial design generated eight search engine interfaces. Eighty participants participated in the study and each completed six realistic search tasks. Results revealed that the inclusion of search hints improved user effectiveness, efficiency and confidence when using the search interfaces, but with complex interactions that require specific guidelines for search interface designers. These design guidelines will allow search designers to create more effective interfaces for a variety of searchapplications.
Resumo:
We build a system to support search and visualization on heterogeneous information networks. We first build our system on a specialized heterogeneous information network: DBLP. The system aims to facilitate people, especially computer science researchers, toward a better understanding and user experience about academic information networks. Then we extend our system to the Web. Our results are much more intuitive and knowledgeable than the simple top-k blue links from traditional search engines, and bring more meaningful structural results with correlated entities. We also investigate the ranking algorithm, and we show that the personalized PageRank and proposed Hetero-personalized PageRank outperform the TF-IDF ranking or mixture of TF-IDF and authority ranking. Our work opens several directions for future research.