915 resultados para seafood liquid waste generation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry in Northern Ireland is one of the major contributors of construction waste to landfill each year. The aim of this research paper is to identify the core on-site management causes of material waste on construction sites in Northern Ireland and to illustrate various methods of prevention which can be adopted. The research begins with a detailed literature review and is complemented with the conduction of semi-structured interviews with 6 professionals who are experienced and active within the Northern Ireland construction industry. Following on from the literature review and interviews analysis, a questionnaire survey is developed to obtain further information in relation to the subject area. The questionnaire is based on the key findings of the previous stages to direct the research towards the most influential factors. The analysis of the survey responses reveals that the core causes of waste generation include a rushed program, poor handling and on-site damage of materials, while the principal methods of prevention emerge as the adequate storage, the reuse of material on-site and efficient material ordering. Furthermore, the role of the professional background in the shaping of perceptions relevant to waste management is also investigated and significant differences are identified. The findings of this research are beneficial for the industry as they enhance the understanding of construction waste generation causes and highlight the practices required to reduce waste on-site in the context of sustainable development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyzed waste generation and waster disposal problems in municipalities and Cochin Corporation in Ernakulam district.Then the potential of resource recovery and recycling from biodegradable and non bio-degradable waste is established.The study further focused on the need for segregation of waste at the source as biodegradable and non biodegradable solid waste.The potential of resource recovery is explained in detail through the case study.The thesis also highlights the economically viable and environmental friendly methods o f treatment of waste.But the problem is that concerted and earnest attempts are lacking in making use of such methods.In spite of the health problems faced,people living near the dump sites are forced to stay there either because of their weak economic background or family ties.The study did not calculate the economic cost of health problems arising out of unscientific and irresponsible methods of waste disposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kochi, the commercial capital of Kerala, South India and second most important city next to Mumbai on the Western coast is a land having a wide variety of residential environments. Due to rapid population growth, changing lifestyles, food habits and living standards, institutional weaknesses, improper choice of technology and public apathy, the present pattern of the city can be classified as that of haphazard growth with typical problems characteristics of unplanned urban development especially in the case of solid waste management. To have a better living condition for us and our future generations, we must know where we are now and how far we need to go. We, each individual must calculate how much nature we use and compare it to how much nature we have available. This can be achieved by applying the concept of ecological footprint. Ecological footprint analysis (EFA) is a quantitative tool that represents the ecological load imposed on earth by humans in spatial terms. The aim of applying EFA to Kochi city is to quantify the consumption and waste generation of a population and to compare it with the existing biocapacity. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. The paper discusses the various footprint components of Kochi city and in detail analyses the waste footprint of the residential areas using waste footprint analyzer. An attempt is also made to suggest some waste foot print reduction strategies thereby making the city sustainable as far as solid waste management is concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid waste management nowadays is an important environmental issue in country like India. Statistics show that there has been substantial increase in the solid waste generation especially in the urban areas. This trend can be ascribed to rapid population growth, changing lifestyles, food habits, and change in living standards, lack of financial resources, institutional weaknesses, improper choice of technology and public apathy towards municipal solid waste. Waste is directly related to the consumption of resources and dumping to the land. Ecological footprint analysis – an impact assessment environment management tool makes a relationship between two factors- the amount of land required to dispose per capita generated waste. Ecological footprint analysis is a quantitative tool that represents the ecological load imposed on the earth by humans in spatial terms. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. In this paper, an attempt is made to explore the tool Ecological Footprint Analysis with special emphasis to waste generation. The paper also discusses and analyses the waste footprint of Kochi city,India. An attempt is also made to suggest strategies to reduce the waste footprint thereby making the city sustainable, greener and cleaner

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000 kg day(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cassava processing industry generates wastewater named manipueira with a high organic content. Although considered a pollutant, manipueira can be used as substrate for fermentative processes including the cultivation of Geotrichum fragrans. This aerobic microorganism isolated from cassava wastewater has cyanide resistant respiration. Under cassava wastewater cultivation, G. fragrans produced fruit aroma volatile compounds. This study evaluated volatile compounds produced by G. fragrans in cassava liquid waste. The waste had a sugar composition composed of dextrin (2.6%), maltose (1.4%), sucrose (32.1%), glucose (38.3%), and fructose (25.6%). The average value of total sugars was 58.2 g l(-1), composed of 38.0 g l(-1) reducing and 20.2 g l(-1) non-reducing sugars. The chemical oxygen demand (COD) average value was 60 000 mg l(-1). G. fragrans used sugars (fructose and glucose) for energy generation reducing the COD value of the cassava wastewater by 40%. Biomass production of G. fragrans cultivated for 12 h in natural cassava liquid waste was 12.8 g l(-)1. The volatile compounds identified in the cassava liquid waste after 72 h cultivation were: 1-butanol, 3-methyl 1-butanol (isoamylic alcohol), 2-methyl 1-butanol, 1-3 butanodiol and phenylethanol; ethyl acetate, ethyl propionate, 2-methyl ethyl propionate and 2-methyl propanoic. The effect of substrate supplementation with glucose (50 g l(-1)), fructose (50 g l(-1)) and aqueous yeast extract (200 ml l(-1)) did not affect the qualitative and quantitative profiles of volatile compounds. These results indicate that the carbon (C) source utilized by microorganism was glucose or fructose, while nitrogen (N) supplementation was not necessary because the agent did not exhaust all the nitrogen of the wastewater. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. Method. It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. Results: We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. Conclusion: We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management. © 2013 Chaves et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2010 Brazil produced about 60.8 million of municipal solid waste, an amount 6.8% higher than in 2009 and six times the rate of urban population growth recorded in the same period. According to a study by the Brazilian Association of Companies of Special Wasteand Public Cleansing (Abrelpe), the average waste generated per person in the same period the country was 378 Kilograms, an amount 5.3% higher to 2009 (359 Kg). The total reached 60.8 milion tons of waste, 6.5 million tons were collected and not end up inrivers, streams and vacant lots. Of this total production, 42.4% or 22.9 million Tons, did not receive proper destination and destiny had dumps and landfills. The data show that the country is in upward trend in waste generation, but did not advance the appropriate destination at the same pace. The waste thus throw open cause public helth problems, such as proliferation of disease vectors (flies, mosquitoes, cockroaches, rats, and others). Generation of odors and especially the pollution of soil, surface water and groundwater through slurry ( liquid black, smelly and high pollution potential produced by the decomposition of organic matter contained in waste), affecting the water. This Study shows the popper closure of the areas, wich long has been degrading our natural resources, not to cause damage to nature and therefore society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aperfeiçoamento em equipamento para digestão de amostras por via úmida. É descrito um aperfeiçoamento em equipamento para digestão de amostras por via úmida que emprega tubos de digestão (20) fechados não encapsulados e aquecimento condutivo que possibilita a rápida decomposição de amostras botânicas, alimentícias, clínicas, ambientais e similares, promovendo um gradiente de temperatura em direção à parte superior do tubo de digestão, permitindo que a temperatura da fase gasosa seja inferior à da fase líquida, de forma que as digestões são realizadas à pressão pouco elevada e, consequentemente, os tubos de digestão utilizados podem ter paredes menos espessas, permitindo o rápido aquecimento e resfriamento das amostras, bem como baixo custo de operação e manutenção, simplicidade, alta frequência analítica,; redução do consumo de reagentes e diminuição da geração de resíduos, dito equipamento provido de um gabinete (10) que evita a contaminação da atmosfera do laboratório por vapores ácidos e a perda dos componentes voláteis da amostra durante o aquecimento

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.