952 resultados para screen printing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organ printing techniques offer the potential to produce living 3D tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations along multiple axes with high geometric complexity can be obtained.. The level of control offered by these technologies to develop printed tissues will allow tissue engineers to better study factors that modulate tissue formation and function, and provide a valuable tool to study the effect of anatomy on graft performance. In this chapter we discuss the history behind substrate patterning and cell and organ printing, and the rationale for developing organ printing techniques with respect to limitations of current clinical tissue engineering strategies to effectively repair damaged tissues. We discuss current 2-dimensional and 3-dimesional strategies for assembling cells as well as the necessary support materials such as hydrogels, bioinks and natural and synthetic polymers adopted for organ printing research. Furthermore, given the current state-of-the-art in organ printing technologies, we discuss some of their limitations and provide recommendations for future developments in this rapidly growing field.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I’ve been researching, teaching and writing about journalism for more than two decades. Throughout that time I’ve used feature films to illustrate howthe journalist is represented in popular culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the proposition that growth and development in the screen and creative industries is not confined to the major capital cities. Lifestyle considerations, combined with advances in digital technology, convergence and greater access to broadband are altering requirements for geographic location, and creative workers are being drawn away from the big metropolises to certain regional areas. Regional screen industry enclaves are emerging outside of London, in the Highlands and Islands of Scotland, in Nova Scotia in Canada and in New Zealand. In the Australian context, the proposition is tested in an area regarded as a ‘special case’ in creative industry expansion: the Northern Rivers region of NSW. A key feature of the ‘specialness’ of this region is the large number of experienced, credited producers who live and operate their businesses within the region. The development of screen and creative industries in the Northern Rivers over the decade 2000 – 2010 has implications for regional regeneration and offers new insights into the rapidly changing screen industry landscape. This development also has implications for creative industry discourse, especially the dominance of the urban in creative industries thought. The research is pioneering in a number of ways. Building on the work conducted for my Masters thesis in 2000, a second study was conducted during the research phase, adapting creative industries theory and mapping methods, which have been largely city and nation-centric, and applying them to a regional context. The study adopted an action research approach as an industry development strategy for screen industries, while at the same time developing fine-grained ground up methods for collecting primary quantitative data on the size and scope of the creative industries. In accordance with the action research framework, the researcher also acted in the dual roles of industry activist and screen industry producer in the region. The central focus of the research has been both to document and contribute to the growth and development of screen and creative industries over the past decade in the Northern Rivers region. These interventions, along with policy developments at both a local and national level, and broader global shifts, have had the effect of repositioning the sector from a marginal one to a priority area considered integral to the future economic and cultural life of the region. The research includes a detailed mapping study undertaken in 2005 with comparisons to an earlier 2000 study and to ABS data for 2001 and 2006 to reveal growth trends. It also includes two case studies of projects that developed from idea to production and completion in the region during the decade in question. The studies reveal the drivers, impediments and policy implications for sustaining the development of screen industries in a regional area. A major finding of the research was the large and increasing number of experienced producers who operate within the region and the leadership role they play in driving the development of the emerging local industry. The two case studies demonstrate the impact of policy decisions on local screen industry producers and their enterprises. A brief overview of research in other regional areas is presented, including two international examples, and what they reveal about regional regeneration. Implications are drawn for creative industries discourse and regional development policy challenges for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to examine the effects on driving, usability and subjective workload of performing music selection tasks using a touch screen interface. Additionally, to explore whether the provision of visual and/or auditory feedback offers any performance and usability benefits. Thirty participants performed music selection tasks with a touch screen interface while driving. The interface provided four forms of feedback: no feedback, auditory feedback, visual feedback, and a combination of auditory and visual feedback. Performance on the music selection tasks significantly increased subjective workload and degraded performance on a range of driving measures including lane keeping variation and number of lane excursions. The provision of any form of feedback on the touch screen interface did not significantly affect driving performance, usability or subjective workload, but was preferred by users over no feedback. Overall, the results suggest that touch screens may not be a suitable input device for navigating scrollable lists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to try to come to grips with what content and applications are likely to be feasible, popular and beneficial on the National Broadband Network, which is being rolled out now. This short article looks at the three main types of content ('unmanaged', 'managed' and 'publicly supported' services), shows how creative content is being, or could be, deployed across all three, and discusses the policy opportunities and challenges for content industries in connecting with what Minister for Regional Australia, Regional Development and Local Government and Minister for the Arts Simon Crean calls 'the largest cultural infrastructure project Australia has ever seen'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic modifiers are the proteins involved in establishing and maintaining the epigenome of an organism. They are particularly important for development. Changes in epigenetic modifiers have been shown be lethal, or cause diseases. Our laboratory has developed an ENU mutagenesis screen to produce mouse mutants displaying altered epigenetic gene silencing. The screen relies on a GFP transgene that is expressed in red blood cells in a variegated manner. In the orginal transgenic FVB mice expression occurs in approximately 55% of red blood cells. During the course of my Masters, I characterised four different Mommes (Modifiers of murine metastable epiallele), MommeD32, MommeD33, MommeD35 and MommeD36. For each Momme, I identified the underlying mutation, and observed the corresponding phenotype. In MommeD32 the causative mutation is in Dnmt1, (DNA methyltransferase 1). This gene was previously identified in the screen, as MommeD2, and the new allele, MommeD32 has a change in the BAH domain of the protein. MommeD33 is the result of a change at the transgene itself. MommeD35 carries a mutation in Suv39h1 (suppressor of variegation 3-9 homolog 1). This gene has not previously been identified in the screen, but it is a known epigenetic modifier. MommeD36 had the same ENU treated sire as MommeD32, and I found that it has the same mutation as MommeD32. These mutant strains provide valuable tools that can be used to further our knowledge of epigenetic reprogramming. An example being the cancer study done with MommeD9 which has a mutation in Trim28. By crossing MommeD9+/- mutant mice with Trp53+/- mice, it can be seen if Trim28 has an effect on the rate of tumour genesis. However no clear effect of Trim28 haploinsufficiency can be observed in Trp53+/- mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.