997 resultados para scalar effects
Resumo:
We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector of quasinormal modes in spherically symmetric black holes. We consider the evolution of a massless scalar field on the space-time corresponding to a charged semiclassical black hole, consisting of the quantum-corrected geometry of a Reissner-Nordstrom black hole dressed by a quantum massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in the quasinormal mode frequencies due to vacuum polarization.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We derive the equation of state (EOS) for electrically charged neutral dense matter using the quantum hadrodynamics (QHD) model. This is carried out in a non-perturbative manner including quantum corrections for baryons through a realignment of vacuum with baryon-antibaryon condensates. This yields the results of relativistic Hartree approximation of summing over baryonic tadpole diagrams. The quantum corrections from the scalar meson is also taken into account in a similar way. This leads to a softening of the EOS for the hyperonic matter. The formalism also allows Lis to make a self-consistent calculation of the in-medium sigma meson mass. The effects of such quantum corrections on the composition of charged neutral dense matter is considered. The effect of the resulting EOS on the structure of neutron stars is also studied.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.
Resumo:
We study signals for the production of superparticles at the Fermilab Tevatron in supergravity scenarios based on the grand unified group SO(10). The breaking of this group introduces extra contributions to the masses of all scalars, described by a single new parameter. We find that varying this parameter can considerably change the size of various expected signals studied in the literature, with different numbers of jets and/or charged leptons in the final state. The ratios of these signals can thus serve as a diagnostic to detect or constrain deviations from the much-studied scenario where all scalar masses are universal at the GUT scale. Moreover, under favorable circumstances some of these signals, and/or new signals involving hard b jets, should be observable at the next run of the Fermilab Tevatron collider even if the average scalar mass lies well above the gluino mass. ©2000 The American Physical Society.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.
Resumo:
We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account quantum fluctuations of the σ meson as well as vacuum polarization effects for the nucleons. This model incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quantum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The in-medium nucleon and σ-meson masses are also calculated in a self-consistent manner. The spectral function of the σ meson is calculated and the σ mass has the value increased with respect to the purely classical approximation at high densities.
Resumo:
We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress-energy tensor of a real massless minimally coupled scalar field defined in a (d+1)-dimensional flat space-time with topology R×Td. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein-Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress-energy associated with the scalar field is presented. © 2013 World Scientific Publishing Company.
Resumo:
The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.
Resumo:
We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.