50 resultados para sapling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tsuga canadensis (eastern hemlock) is a highly shade-tolerant, late-successional, and long-lived conifer species found throughout eastern North America. It is most often found in pure or nearly pure stands, because highly acidic and nutrient poor forest floor conditions are thought to favor T. canadensis regeneration while simultaneously limiting the establishment of some hardwood species with greater nutrient requirements. Once a common species, T. canadensis is currently experiencing widescale declines across its range. The hemlock woolly adelgid (Adelges tsugae) is decimating the population across its eastern distribution. Across the Upper Great Lakes region, where the adelgid is currently being held at bay by cold winter temperatures, T. canadensis has been experiencing failures in regeneration attributed, in part, to herbivory by white-tailed deer (Odocoileus virginianus). Deer utilize T. canadensis stands as winter habitat in areas of high snow depth. Tsuga canadensis, once a major component of these forests, currently exists at just a fraction of its pre-settlement abundance due to historic logging and contemporary forest management practices, and what remains is found in small remnant patches surrounded by second- and third-growth deciduous forests. The deer population across the region, however, is likely double that of pre-European settlement times. In this dissertation I explore the relationship between white-tailed deer use of T. canadensis as winter habitat and the effect this use is having on regeneration and forest succession. For this research I quantified stand composition and structure and abiotic variables of elevation and snow depth in 39 randomly selected T. canadensis stands from across the western Upper Peninsula of Michigan. I also quantified composition and the configuration of the landscapes surrounding these stands. I measured relative deer use of T. canadensis stands as pellet group piles deposited in each stand during each of three consecutive winters, 2005-06, 2006-07, and 2007-08. The results of this research suggest that deer use of T. canadensis stands as winter habitat is influenced primarily by snow depth, elevation, and the composition and configuration of the greater landscapes surrounding these stands. Specifically, stands with more heterogeneous landscapes surrounding them (i.e., a patchy mosaic of conifer, deciduous, and open cover) had higher relative deer use than stands surrounded by homogenous deciduous forest cover. Additionally, the intensity of use and the number of stands used was greater in years with higher average snow depth. Tsuga canadensis regeneration in these stands was negatively associated with deer use and Acer saccharum (sugar maple) basal area. Of the 39 stands, 17 and 22 stands had no T. canadensis regeneration in small and large sapling categories, respectively. Acer saccharum was the most common understory tree species, and the importance of A. saccharum in the understory (stems < 10 cm dbh) of the stands was positively associated with overstory A. saccharum dominance. Tsuga canadensis establishment was associated with high-decay coarse woody debris and moss, and deciduous leaf litter inputs in these stands may be limiting access to these important microsites. Furthermore, A. saccharum is more tolerant to the effects of deer herbivory than T. canadensis, giving A. saccharum a competitive advantage in stands being utilized as winter habitat by deer. My research suggests that limited microsite availability, in conjunction with deer herbivory, may be leading to an erosion in T. canadensis patch stability and an altered successional trajectory toward one of A. saccharum dominance, an alternately stable climax species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Montane cloud forests are home to great biodiversity. However, non-sustainable anthropogenic activities have led to the loss of forest cover in southern Mexico. Increasing conservation, restoration and sustainable use of forest resources prevents the loss of cloud forests. In this study, success of forest restoration was evaluated in a degraded forest of Highlands Chiapas. The goal of this study was to assess the structure and composition of native tree species. We evaluated vegetation composition at three sites that had undergone enrichment plantings. Floristic composition and structure of the herbaceous, seedling, sapling, and overstory layers were measured. A total of sixty-six native tree species were recorded. Enrichment planting was found to have increased tree diversity. Moreover, 54% of the planted species were found in the understory, indicating that they were successfully recruiting. In conclusion, enrichment planting can aid in the conservation of forest cover in degraded areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of negative conspecific density dependence (NDD) operating on seedling survival and sapling recruitment has accumulated recently. In contrast, evidence of NDD operating on growth of trees has been circumstantial at best. Whether or not local NDD at the level of individual trees leads to NDD at the level of the community is still an open question. Moreover, whether and how perturbations interfere with these processes have rarely been investigated. We applied neighborhood models to permanent plot data from a Bornean dipterocarp forest censused over two 10-11 year periods. Although the first period was only lightly perturbed, a moderately strong El Nino event causing severe drought occurred in the first half of the second period. Such events are an important component of the environmental stochasticity affecting the region. We show that local NDD on growth of small-to-medium-sized trees may indeed translate to NDD at the level of the community. This interpretation is based on increasingly negative effects of bigger conspecific neighbors on absolute growth rates of individual trees with increasing basal area across the 18 most abundant overstory species in the first period. However, this relationship was much weaker in the second period. We interpreted this relaxation of local and community-level NDD as a consequence of increased light levels at the forest floor due to temporary leaf and twig loss of large trees in response to the drought event. Mitigation of NDD under climatic perturbation acts to decrease species richness, especially in forest overstory and therefore has an important role in determining species relative abundances at the site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although negative density dependence (NDD) can facilitate tree species coexistence in forests, the underlying mechanisms can differ, and rarely are the dynamics of seedlings and saplings studied together. Herein we present and discuss a novel mechanism based on our investigation of NDD predictions for the large, grove-forming ectomycorrhizal mast fruiting tree, Microberlinia bisulcata (Caesalpiniaceae), in an 82.5-ha plot at Korup, Cameroon. We tested whether juvenile density, size, growth and survival decreases with increasing conspecific adult basal area for 3245 ‘new’ seedlings and 540 ‘old’ seedlings (< 75-cm tall) during an approximately 4-year study period (2008–2012) and for 234 ‘saplings’ (≥ 75-cm tall) during an approximately 6-year study period (2008–2014). We found that the respective densities of new seedlings, old seedlings and saplings were positively, not and negatively related to increasing BA. Maximum leaf numbers and heights of old seedlings were negatively correlated with increasing basal areas, as were sapling heights and stem diameters. Whereas survivorship of new seedlings decreased by more than one-half with increasing basal area over its range in 2010–2012, that of old seedlings decreased by almost two-thirds, but only in 2008–2010, and was generally unrelated to conspecific seedling density. In 2010–2012 relative growth rates in new seedlings’ heights decreased with increasing basal area, as well as with increasing seedling density, together with increasing leaf numbers, whereas old seedlings’ growth was unrelated to either conspecific density or basal area. Saplings of below-average height had reduced survivorship with increasing basal area (probability decreasing from approx. 0.4 to 0.05 over the basal area range tested), but only sapling growth in terms of leaf numbers decreased with increasing basal area. These static and dynamic results indicate that NDD is operating within this system, possibly stabilizing the M. bisulcata population. However, these NDD patterns are unlikely to be caused by symmetric competition or by consumers. Instead, an alternative mechanism for conspecific adult–juvenile negative feedback is proposed, one which involves the interaction between tree phenology and ectomycorrhizal linkages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los bosques de Maytenus boaria Mol. (maitén) se distribuyen en Mendoza en el borde oriental de la Cordillera Frontal en el Dpto. de San Carlos y constituyen valiosos relictos. El objetivo del trabajo fue estudiar el estado de conservación de estos bosques en umbría y solana entre 1500 y 1640 m s.n.m. en quebradas de esta cordillera. Para ello se relevó el número de individuos por clase diamétrica (adultos, jóvenes y renovales) y sus características de vitalidad-deterioro. Los bosques relevados se presentan esquemáticamente mediante perfiles que sintetizan su fisonomía, principales características ambientales y la presencia de disturbios. Si se considera la totalidad de los adultos de las poblaciones inventariadas (100 maitenes) sólo 19% están sanos, 50% débiles, 17% decrépitos y 14% muertos en pie; esto reflejaría algún tipo de estrés que reduce su vitalidad o que estarían alcanzando la vejez. La causa del deterioro en jóvenes y renovales se debe al ataque por insectos y/o por ramoneo del ganado; debido al alto deterioro medio de los renovales (65%) y jóvenes (88%) la renovación del bosque es incierta. Se concluye que es necesario iniciar la conservación de estos bosques y profundizar en su conocimiento. Se trata del primer estudio de bosques de maitén en las quebradas de la Cordillera Frontal de Mendoza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo del trabajo fue evaluar la respuesta de plantas jóvenes de cuatro especies forestales urbanas a diferentes niveles de déficit hídrico. El ensayo se realizó en vivero, durante tres ciclos vegetativos, con plantas de Platanus x hispanica cv. acerifolia (plátano), Morus alba (morera), Fraxinus americana (fresno americano) y Acacia visco (visco). Los tratamientos de riego fueron: control (reposición del 100% transpirado); riego deficitario moderado (reposición del 66% transpirado) y riego deficitario severo (reposición del 33% transpirado). Las variables de respuesta evaluadas fueron altura, diámetro de tallos, área foliar y ancho de anillos de crecimiento. Las plantas bajo riego deficitario severo presentaron disminuciones en todos los parámetros de crecimiento considerados. Acacia visco resultó con crecimientos comparables al control, bajo riego deficitario equivalente al 66% del agua transpirada, con lo cual puede ser considerada especie de interés para forestaciones en condiciones de estrés hídrico moderado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muchos estudios han descrito la composición y diversidad de los bosques montanos tropicales, pero los patrones espaciales y las diferentes tipos de relaciones de estos, entre especies o entre grupos funcionales ha sido poco documentada. El presente trabajo se realizó en tres parcelas completamente censadas del bosque de la Estación Biológica “Chamusquin” (Zamora Chinchipe, Ecuador), y se plantea como objetivo principal conocer la estructura espacial y dinámica del bosque montano tropical del sur del Ecuador, así como las interacciones bióticas y limitaciones abióticas que influyen en esta dinámica, para ello se planteó cuatro objetivos de estudio que son: conocer los patrones espaciales de los gremios ecológicos dentro de la zona de estudio; conocer la influencia de la dependencia negativa de la densidad sobre dos especies de helechos arborescentes (Cyatheaceae); conocer si existen especies o grupos ecológicos acumuladoras o repulsoras de diversidad en el área de estudio; y conocer cómo influyen la diversidad filogenética y la densidad del vecindario en la incidencia de herbivoría y parasitismo sobre las fases iniciales del establecimiento forestal (brinzales) así como en la supervivencia de los mismos Como paso previo para el análisis del resto de objetivos, dentro de cada parcela se marcaron todos los individuos con DAP ≥5 cm y se tomaron sus coordenadas (X, Y). Además se tomaron datos de variables superficiales y muestras del suelo. Las especies encontradas se clasificaron de acuerdo a sus características biológicas, asignándolas a cada uno de los cuatro gremios forestales usualmente distinguidos en los bosques tropicales: tolerantes a la sombra (TS), tolerantes parciales a la sombra (TPS), pioneras de vida larga (PVL) y pioneras de vida corta (PVC). Para el estudio del primer objetivo tas se emplearon funciones K de Ripley inhomogéneas, ajustando la heterogeneidad en base a la variación espacial de las variables ambientales registradas . Los resultados demostraron que tanto la frecuencia relativa como el patrón espacial de las diferentes estrategias funcionales varían a lo largo de la sucesión y que éste además está influido por la variación ambiental. En adición, tanto el patrón espacial como la respuesta a la variación ambiental de los diferentes gremios es distinta entre adultos y juveniles. Todo ello sugiere que el ensamblaje de la diversidad en los bosque montanos andinos está controlado por procesos deterministas más que por procesos neutrales. Para responder el segundo objetivo se estudiaron los efectos de la dependencia negativa de la densidad (DND) y la heterogeneidad ambiental en las poblaciones de dos especies de helechos arborescentes abundantes, Cyathea caracasana y Alsophila engelii, y cómo estos efectos cambian a través de un gradiente sucesional. Los patrones de especies albergan información sobre procesos tales como la competencia que puede ser revelado fácilmente utilizando técnicas de análisis de patrones punto. Sin embargo, su detección puede ser difícil debido a los efectos de factores de confusión heterogeneidad del hábitat. Aquí, empleamos funciones K y funciones de correlación de par homogéneas y no homogéneas para cuantificar el cambio en el patrón espacial de diferentes clases de tamaño con un diseño de casos-controles para estudiar las asociaciones entre helechos arborescentes jóvenes y adultos. Usando estimaciones espaciales de la biomasa de los cuatro tipos de gremios ecológicos (PVC, PVL, TPS, TS) como covariables, hemos ajustado modelos de Poisson heterogéneos a los patrones de puntos de de los helechos juveniles y los adultos y hemos explorado además la existencia de dependencia del hábitat en estos patrones. Nuestro estudio reveló efectos de la DND para C. caracasana y un fuerte filtrado ambiental que subyace al patrón de A. engelii. Encontramos también que las poblaciones de adultos y juveniles de ambas especies respondieron de manera diferente a la heterogeneidad del hábitat y en la mayoría de los casos esta heterogeneidad se asoció con la distribución espacial de la biomasa de los cuatro tipos de gremios. Estos resultados muestran la eficacia de controlar los efectos de la heterogeneidad ambiental para evitar su confusión con los patrones derivados de interacciones biológicas cuando se estudia la DND y demuestran la utilidad de los mapas de covariables derivados de comunidades biológicas como resumen de la heterogeneidad ambiental. Para nuestro tercer objetivo nos centramos en explorar cómo influyen las especies más abundantes en la organización espacial de la diversidad a lo largo de un gradiente sucesional en el bosque montano del sur del Ecuador. Para ello utilizamos la función ISAR (Individual Species Area Relationship). Encontramos que la frecuencia de especies neutras, repulsoras y acumuladoras de diversidad taxonómica varía dependiendo del grado de sucesión. Además se comprobó que la mayoría de los gremios forestales se comportó de forma neutral, pero la proporción de acumuladores, aumentó al avanzar la sucesión hacia estados más maduros, lo que indica el establecimiento de fuertes procesos competitivos a medida que avanza la sucesión y la mayor importancia del papel de las especies individuales en dichos estados. Finalmente, examinamos el efecto de la vecindad taxonómica y filogenética, así como la estrategia de vida, sobre la incidencia de la herbivoría y el parasitismo en las poblaciones de brinzales de tres fragmentos forestales en una secuencia sucesional del bosque montano húmedo. Evaluamos además los efectos de herbivoría, parasitismo, estrategia de vida y diferentes indicadores de la vecindad sobre la supervivencia de los brinzales. Por último contrastamos la posible existencia de una tendencia compensatoria de la comunidad (CCT) a nivel de fragmento forestal. Nuestros análisis no consiguieron detectar una CCT pero si pusieron de manifiesto la existencia de efectos locales de dependencia negativa de la densidad. Por ejemplo, la presencia de herbivoría y parasitismo sobre los brinzales se relacionó significativamente con una menor supervivencia de estos. Por otro lado, indicadores del efecto de la vecindad como la densidad de brinzales del mismo género y el área basal de árboles vecinos del mismo género incrementaron la prevalencia de la herbivoría o el parasitismo en los brinzales. El incremento de la incidencia de la herbivoría o el parasitismo no está exclusivamente ligado a tener una vecindad taxonómicamente idéntica (vecinos de la misma especie) sino que categorías taxonómicas más laxas como el "género" o simplemente relaciones de semejanza filogenética son capaces de predecir los efectos negativos de la vecindad. Los efectos detectados variaron en los diferentes grupos funcionales distinguidos. Los resultados que hemos obtenido en este trabajo parecen indicar que el funcionamiento de las comunidades de brinzales del bosque montano tropical no difiere mucho del reportado para comunidades de plántulas en otros bosques tropicales y cumple las predicciones de la hipótesis de Janzen y Connell, aunque matizadas por la mayor resistencia de los brinzales al efecto de herbivoría y parasitismo. ABSTRACT Many studies have described the composition and diversity of tropical montane forests, but the different spatial patterns and types of relationships between species or between functional groups has been poorly documented. This work was made in three completely surveyed forest plots at Biological Station "Chamusquin" (Zamora Chinchipe, Ecuador). Our main objective was to know the spatial structure and dynamics of the tropical montane forest in southern Ecuador, as well as the biotic interactions and abiotic constraints affecting this dynamic. More specifically, we aimed to understand the spatial patterns of ecological guilds; to explore the influence of negative density dependence on two species of tree ferns (Cyatheaceae); to determine whether some species or ecological groups structure spatially plant diversity in these forests; and to test the effects of biological neighborhood on the incidence of herbivory and parasitism and on the survival of saplings. We mapped within each plot all trees with DBH ≥5 cm. Besides, surface data variables and soil samples they were taken. The species found were classified according to their biological characteristics in four forest guilds: shade-tolerant (ST), partial shade tolerant (PST), long-lived pioneer (LLP) and short-lived pioneer (SLP). To analyze the spatial patterns of the ecological guilds, we employed the inhomogeneous version of Ripley's K-function and adjusted heterogeneity surfaces based on the spatial variation of the measured environmental variables. The results showed that both the relative frequency of each functional guild as well as their spatial pattern varied throughout succession and that the spatial pattern is explained by environmental variation. In addition, both spatial pattern and the response to spatial variation of each guild varied throughout ontogeny. All in all suggest that diversity assembly in the studied forests is ruled by deterministic instead of neutral processes. We also addressed the negative effects of density dependence (NDD) and environmental heterogeneity in populations of two species of abundant tree ferns, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient.. Here, we used homogeneous and inhomogeneous K and pair-correlation functions to quantify the change in the spatial pattern of different size classes with a case-control design to study associations between young and adult tree ferns. Using spatial estimates of the biomass of the four types of ecological guilds (SLP, LLP, PST, ST) as co-variables, we fitted heterogeneous Poisson models to juvenile and adult tree fern point patterns and explored the existence of habitat dependence. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities. For our third objective we focused on exploring how the most abundant species influence the spatial organization of tree diversity in these forests. For this, we used the individual species-area relationship function (ISAR). We found that the proportion of accumulator, repeller and neutral species, varied depending on the degree of succession. We found also that most guilds behaved neutrally but the proportion of accumulator guilds increased as succession advanced to more mature stages. This point, to the existence of strong competitive effects mediated by individual species in these mature forests. Finally, we examined the effects of life strategies and taxonomic and phylogenetic neighborhood on the incidence of herbivory and parasitism in the communities of saplings in the same forest fragments. We evaluated also the effects of life strategies, herbivory, parasitism and some indicators of neighborhood on sapling survival. Finally we tested for the existences of a compensatory community trend at plot scale. We did not found a CCT but we found proof of local NND effects. For instance, the prevalence of herbivory and parasitism were related to lower sapling survival. On the other hand the density of con-generic saplings and the basal area of neighbor con-generic trees were related to a higher prevalence of herbivory or parasitism in the saplings. We demonstrated that the increase in the prevalence of herbivory or parasitism it s not exclusive of a conspecific neighborhood but instead larger taxonomic categories such as "genus" or simple phylogenetic relationships are also able to predict NND effects. The NND effects varied among functional guilds. Our results show that the dynamic of sapling communities in Ecuadorian montane forests is similar to seedling dynamics in other tropical forest and follows the predictions of Janzen-Connell hypothesis, although softened by the strong resilience of saplings in comparison to seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.