972 resultados para salt-stress
Resumo:
The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.
Resumo:
The morphological and biochemical response of calli and seedlings of different rice cultivars were compared under acid saline conditions. Calli of both tolerant and sensitive varieties showed severe stress symptoms like browning and necrosis, but the onset of stress symptoms was delayed in Pokkali. Seedlings of Pokkali showed minimal stress symptoms in lower salinities, and curling and senescence of older leaves in higher salinities although plants revived on amelioration of stress. Seedlings of the other varieties showed severe stress symptoms even at low salinities and plant death at higher salinities. Salt stress induced accumulation of the putative osmoprotectant proline in calli and seedlings of all varieties. Proline accumulation was higher in sensitive varieties than in Pokkali. These results indicate that proline accumulation is not directly correlated with salt tolerance in rice.
Resumo:
The metabolic switch From C-3-photosynthesis to crassulacean acid metabolism (CAM),and the antioxidative response of Mesembryanthemum crystallinum L. plants cultured under severe salt stress and high light intensities, and a combination of booth stress conditions, were studied. High light conditions led to a more rapid CAM induction than salinity. The induction time was still shortened when both stress factors were combined. A main pattern observed in CAM plants was a decrease in mitochondrial Mn-superoxide dismutase (SOD) activity during the day. The activities of the chloroplastic Fe-SOD and cytosolic CuZn-SOD were increased due to salt treatment after a lag phase, while catalase activity was decreased. Combination of salt and light stress did not lead to a higher SOD activity as found after application of one stress factor alone, indicating that there is a threshold level of the oxidative stress response. The fact that salt-stressed plants grown under high light conditions showed permanent photoinhibition and lost the ability for nocturnal malate storage after 9 d of treatment indicate serious malfunction of metabolism, leading to accelerated senescence. Comparison of CuZn-SOD activity with CuZn-SOD protein amount, which was determined immunologically, indicates that the activity of the enzyme is at least partially post-translationally regulated.
Resumo:
Uma das utilizações da técnica de cultura de tecidos para o melhoramento vegetal é a identificação de linhas de células que apresentem tolerância ao estresse salino. Para se estudar os mecanismos bioquímicos envolvidos na expressão genética da tolerância a salinidade, calos oriundos de eixos embrionários de quatro cultivares de feijão (Phaseolus vulgaris L.; cultivares IAC - carioca, IAPAR 14, JALO-EEP 558, BAT - 93), foram cultivados em meio sólido Murashige & Skoog (1962), suplementado com NaCl nas concentrações de 0, 20, 40, 60 e 80 mM. Após 14 dias de incubação, os calos foram coletados e analisados quanto aos padrões isoenzimáticos e de atividade das peroxidases. Os cultivares BAT e IAPAR apresentaram duas zonas de atividade em comum na região anódica e apenas uma zona enzimática específica a cada um deles (migração mais rápida).Possivelmente as duas zonas anódicas intermediárias sejam produtos do mesmo loco enzimático, porém com alelos diferentes, consequentemente diferentes mobilidades eletroforéticas. O cv. JALO apresentou duas zonas anódicas de atividade em comum com os cultivares IAC e IAPAR com uma zona anódica exclusiva de migração mais lenta, a qual apresentou atividade mais intensa de todos os cultivares analisados. Este cultivar revelou ainda uma zona catódica provavelmente dimérica e heterozigota nos indivíduos de todos os tratamentos aplicados. Provavelmente, esta é a mesma zona que ocorre em homozigose com fixação do alelo lento para os indivíduos de todos os tratamentos efetuados nos cultivares BAT e IAPAR. O cv. IAC apresentou duas bandas anódicas em comum com os cv. IAPAR e JALO. Apresentou também a banda anódica mais rápida em comum com o cv. IAPAR e uma banda anódica exclusiva de migração mais lenta. Curiosamente, os indivíduos deste cv. mantidos em meio suplementado com 20 mM de NaCl não apresentaram atividade nas três zonas anódicas mais lentas. Ocorreu no cv. IAC uma única zona de atividade catódica, dimérica e heterozigota para os indivíduos provenientes de todos os tratamentos, composta provavelmente de dois alelos diferentes da zona correspondente ao cv. JALO. Amostras provenientes dos tratamentos 40 e 60 mM de NaCl, desta zona catódica, apresentaram maior atividade enzimática. A análise da atividade da peroxidase no extrato bruto, revelou que os cultivares responderam diferentemente ao aumento da concentração salina no meio de cultura, com aumento pronunciado dessa atividade nos cultivares IAC e JALO.
Resumo:
Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was immunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast. © 2011 China National Rice Research Institute.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
Plants contain several genes encoding thioredoxins (Trxs), small proteins involved in redox regulation of many enzymes in different cell compartments. Among them, mitochondrial Trxo has been described to have a response in plants grown under salinity but there is scarce information about its functional role in abiotic stress or its gene regulation. In this work, the transcriptional regulation of the mitochondrial AtTrxo1 gene has been studied for the first time, by identifying functionally relevant cis- elements in its promoter: two conserved motives were found as positive and one as negative regulators. Using them as baits for the screening of an arrayed yeast library containing Arabidopsis Transcription Factors (TF) ORFs, two TFs were selected that are now being validated at the molecular level. We have also studied the response of T-DNA insertion mutant plants for AtTrxo1 to salt stress. The K.O. AtTrxo1 mutants presented several phenotypic changes including the time required to reach 50% germination under salinity, without affecting the final germination percentage.
Resumo:
DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF1?5 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF1?5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites
Resumo:
Auxin plays an important role in many aspects of plant development including stress responses. Here we briefly summarize how auxin is involved in salt stress, drought (i.e. mostly osmotic stress), waterlogging and nutrient deficiency in Brassica plants. In addition, some mechanisms to control auxin levels and signaling in relation to root formation (under stress) will be reviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demonstrate how this knowledge can be transferred to agriculturally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreover, beneficial fungi could play a role in the adaptation response of Brassica roots to abiotic stresses. Therefore, the possible influence of Piriformospora indica will also be covered since the growth promoting response of plants colonized by P. indica is also linked to plant hormones, among them auxin.
Resumo:
Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44MMK4 kinase was transiently activated by these treatments and was correlated with a shift in the electrophoretic mobility of the p44MMK4 protein. Although transcript levels of the MMK4 gene accumulated after drought and cold treatment, no changes in p44MMK4 steady state protein levels were observed, indicating a posttranslational activation mechanism. Extreme temperatures, drought, and salt stress are considered to be different forms of osmotic stress. However, high salt concentrations or heat shock did not induce activation of p44MMK4, indicating the existence of distinct mechanisms to mediate different stresses in alfalfa. Stress adaptation in plants is mediated by abscisic acid (ABA)-dependent and ABA-independent processes. Although ABA rapidly induced the transcription of an ABA-inducible marker gene, MMK4 transcript levels did not increase and p44MMK4 kinase was not activated. These data indicate that the MMK4 kinase pathway mediates drought and cold signaling independently of ABA.
Resumo:
Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.
Resumo:
Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.
Resumo:
We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.