891 resultados para rule-based logic
Resumo:
This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train
Resumo:
Objective: This study assessed the efficacy of a closed-loop (CL) system consisting of a predictive rule-based algorithm (pRBA) on achieving nocturnal and postprandial normoglycemia in patients with type 1 diabetes mellitus (T1DM). The algorithm is personalized for each patient’s data using two different strategies to control nocturnal and postprandial periods. Research Design and Methods: We performed a randomized crossover clinical study in which 10 T1DM patients treated with continuous subcutaneous insulin infusion (CSII) spent two nonconsecutive nights in the research facility: one with their usual CSII pattern (open-loop [OL]) and one controlled by the pRBA (CL). The CL period lasted from 10 p.m. to 10 a.m., including overnight control, and control of breakfast. Venous samples for blood glucose (BG) measurement were collected every 20 min. Results: Time spent in normoglycemia (BG, 3.9–8.0 mmol/L) during the nocturnal period (12 a.m.–8 a.m.), expressed as median (interquartile range), increased from 66.6% (8.3–75%) with OL to 95.8% (73–100%) using the CL algorithm (P<0.05). Median time in hypoglycemia (BG, <3.9 mmol/L) was reduced from 4.2% (0–21%) in the OL night to 0.0% (0.0–0.0%) in the CL night (P<0.05). Nine hypoglycemic events (<3.9 mmol/L) were recorded with OL compared with one using CL. The postprandial glycemic excursion was not lower when the CL system was used in comparison with conventional preprandial bolus: time in target (3.9–10.0 mmol/L) 58.3% (29.1–87.5%) versus 50.0% (50–100%). Conclusions: A highly precise personalized pRBA obtains nocturnal normoglycemia, without significant hypoglycemia, in T1DM patients. There appears to be no clear benefit of CL over prandial bolus on the postprandial glycemia
Resumo:
Type 1 diabetes-mellitus implies a life-threatening absolute insulin deficiency. Artificial pancreas (CGM sensor, insulin pump and control algorithm) is promising to outperform current open-loop therapies.
Resumo:
In the last decade, with the expansion of organizational scope and the tendency for outsourcing, there has been an increasing need for Business Process Integration (BPI), understood as the sharing of data and applications among business processes. The research efforts and development paths in BPI pursued by many academic groups and system vendors, targeting heterogeneous system integration, continue to face several conceptual and technological challenges. This article begins with a brief review of major approaches and emerging standards to address BPI. Further, we introduce a rule-driven messaging approach to BPI, which is based on the harmonization of messages in order to compose a new, often cross-organizational process. We will then introduce the design of a temporal first order language (Harmonized Messaging Calculus) that provides the formal foundation for general rules governing the business process execution. Definitions of the language terms, formulae, safety, and expressiveness are introduced and considered in detail.
Resumo:
The starting point of this research was the belief that manufacturing and similar industries need help with the concept of e-business, especially in assessing the relevance of possible e-business initiatives. The research hypotheses was that it should be possible to produce a systematic model that defines, at a useful level of detail, the probable e-business requirements of an organisation based on objective criteria with an accuracy of 85%-90%. This thesis describes the development and validation of such a model. A preliminary model was developed from a variety of sources, including a survey of current and planned e-business activity and representative examples of e-business material produced by e-business solution providers. The model was subject to a process of testing and refinement based on recursive case studies, with controls over the improving accuracy and stability of the model. Useful conclusions were also possible as to the relevance of e-business functions to the case study participants themselves. Techniques were evolved to synthesise the e-business requirements of an organisation and present them at a management summary level of detail. The results of applying these techniques to all the case studies used in this research were discussed. The conclusion of the research was that the case study methodology employed was successful. A model was achieved suitable for practical application in a manufacturing organisation requiring help with a requirements definition process.
Resumo:
The paper suggests a classification of dynamic rule-based systems. For each class of systems, limit behavior is studied. Systems with stabilizing limit states or stabilizing limit trajectories are identified, and such states and trajectories are found. The structure of the set of limit states and trajectories is investigated.
Resumo:
* This paper was made according to the program № 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project 06-I-П14-052
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
A költségvetési pénzügyek irodalmában a fenntarthatóság koncepciója csak az elmúlt két-három évtizedben került újra a vizsgálódás fókuszába. Ennek oka kettős. Az 1960-as évek végéig a fegyelmezett fiskális politikai gyakorlat nem igényelte annak állandó napirenden tartását. Csak az olajválságok idejére eső és azután állandósulni látszó költségvetési hiányok és a növekvő államadósság-állományok, illetve az ezek okán erősödő adósságkockázat irányította újra a figyelmet a költségvetési fegyelem fenntartásának fontosságára. Ezt a változást a közgazdaságtudományi elmélettörténetben beállott gyökeres változás kísérte. Az aktív keresletmenedzsment bírálataként megfogalmazódó monetarista kritika, illetve annak radikálisabb újklasszikus változata, a politikai döntéshozókról (és így a diszkrecionális költségvetési politika hatásosságáról) lesújtó véleményt fogalmazott meg, ami azután az aktív intézkedések korlátozásának irányába terelte a gazdaságpolitika alakítóit is. A következőkben e kettős – a fiskális politikai gyakorlat és a közgazdasági elméletek területén bekövetkezett –fordulat bemutatására vállalkozunk az Akadémiai Kiadónál megjelenő Költségvetési pénzügyek – Hiány, államadósság, fenntarthatóság című kötetünk bizonyos részeinek felhasználásával.
Resumo:
Conceptual database design is an unusually difficult and error-prone task for novice designers. This study examined how two training approaches---rule-based and pattern-based---might improve performance on database design tasks. A rule-based approach prescribes a sequence of rules for modeling conceptual constructs, and the action to be taken at various stages while developing a conceptual model. A pattern-based approach presents data modeling structures that occur frequently in practice, and prescribes guidelines on how to recognize and use these structures. This study describes the conceptual framework, experimental design, and results of a laboratory experiment that employed novice designers to compare the effectiveness of the two training approaches (between-subjects) at three levels of task complexity (within subjects). Results indicate an interaction effect between treatment and task complexity. The rule-based approach was significantly better in the low-complexity and the high-complexity cases; there was no statistical difference in the medium-complexity case. Designer performance fell significantly as complexity increased. Overall, though the rule-based approach was not significantly superior to the pattern-based approach in all instances, it out-performed the pattern-based approach at two out of three complexity levels. The primary contributions of the study are (1) the operationalization of the complexity construct to a degree not addressed in previous studies; (2) the development of a pattern-based instructional approach to database design; and (3) the finding that the effectiveness of a particular training approach may depend on the complexity of the task.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.