930 resultados para rotor speed
Resumo:
The integration of electric motors and industrial appliances such as pumps, fans, and compressors is rapidly increasing. For instance, the integration of an electric motor and a centrifugal pump provides cost savings and improved performance characteristics. Material cost savings are achieved when an electric motor is integrated into the shaft of a centrifugal pump, and the motor utilizes the bearings of the pump. This arrangement leads to a smaller configuration that occupies less floor space. The performance characteristics of a pump drive can be improved by using the variable-speed technology. This enables the full speed control of the drive and the absence of a mechanical gearbox and couplers. When using rotational speeds higher than those that can be directly achieved by the network frequency the structure of the rotor has to be mechanically durable. In this thesis the performance characteristics of an axial-flux solid-rotor-core induction motor are determined. The motor studied is a one-rotor-one-stator axial-flux induction motor, and thus, there is only one air-gap between the rotor and the stator. The motor was designed for higher rotational speeds, and therefore a good mechanical strength of the solid-rotor-core rotor is required to withstand the mechanical stresses. The construction of the rotor and the high rotational speeds together produce a feature, which is not typical of traditional induction motors: the dominating loss component of the motor is the rotor eddy current loss. In the case of a typical industrial induction motor instead the dominating loss component is the stator copper loss. In this thesis, several methods to decrease the rotor eddy current losses in the case of axial-flux induction motors are presented. A prototype motor with 45 kW output power at 6000 min-1 was designed and constructed for ascertaining the results obtained from the numerical FEM calculations. In general, this thesis concentrates on the methods for improving the electromagnetic properties of an axial-flux solid-rotor-core induction motor and examines the methods for decreasing the harmonic eddy currents of the rotor. The target is to improve the efficiency of the motor and to reach the efficiency standard of the present-day industrial induction motors equipped with laminated rotors.
Resumo:
The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
This study compares different rotor structures of permanent magnet motors with fractional slot windings. The surface mounted magnet and the embedded magnet rotor structures are studied. This thesis analyses the characteristics of a concentrated two-layer winding, each coil of which is wound around one tooth and which has a number of slots per pole and per phase less than one (q < 1). Compared to the integer slot winding, the fractional winding (q < 1) has shorter end windings and this, thereby, makes space as well as manufacturing cost saving possible. Several possible ways of winding a fractional slot machine with slots per pole and per phase lessthan one are examined. The winding factor and the winding harmonic components are calculated. The benefits attainable from a machine with concentrated windingsare considered. Rotor structures with surface magnets, radially embedded magnets and embedded magnets in V-position are discussed. The finite element method isused to solve the main values of the motors. The waveform of the induced electro motive force, the no-load and rated load torque ripple as well as the dynamic behavior of the current driven and voltage driven motor are solved. The results obtained from different finite element analyses are given. A simple analytic method to calculate fractional slot machines is introduced and the values are compared to the values obtained with the finite element analysis. Several different fractional slot machines are first designed by using the simple analytical methodand then computed by using the finite element method. All the motors are of thesame 225-frame size, and have an approximately same amount of magnet material, a same rated torque demand and a 400 - 420 rpm speed. An analysis of the computation results gives new information on the character of fractional slot machines.A fractional slot prototype machine with number 0.4 for the slots per pole and per phase, 45 kW output power and 420 rpm speed is constructed to verify the calculations. The measurement and the finite element method results are found to beequal.
Resumo:
This thesis presents an alternative approach to the analytical design of surface-mounted axialflux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min-1 rotation speed has been designed and constructed for the purposesof ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min-1, 300 min-1 and 600 min-1 and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter)is below 0.5. The comparison results show also that radial-flux machines with alow number of pole pairs, p < 4, outperform the corresponding axial-flux machines.
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
The non-idealities in a rotor-bearing system may cause undesirable subcritical superharmonic resonances that occur when the rotating speed of the rotor is a fraction of the natural frequency of the system. These resonances arise partly from the non-idealities of the bearings. This study introduces a novel simulation approach that can be used to study the superharmonic vibrations of rotor-bearing systems. The superharmonic vibrations of complex rotor-bearing systems can be studied in an accurate manner by combining a detailed rotor and bearing model in a multibody simulation approach. The research looks at the theoretical background of multibody formulations that can be used in the dynamic analysis of flexible rotors. The multibody formulations currently in use are suitable for linear deformation analysis only. However, nonlinear formulation may arise in high-speed rotor dynamics applications due to the cenrrifugal stiffening effect. For this reason, finite element formulations that can describe nonlinear deformation are also introduced in this work. The description of the elastic forces in the absolute nodal coordinate formulation is studied and improved. A ball bearing model that includes localized and distributed defects is developed in this study. This bearing model could be used in rotor dynamics or multibody code as an interface elements between the rotor and the supporting structure. The model includes descriptions of the nonlinear Hertzian contact deformation and the elastohydrodynamic fluid film. The simulation approaches and models developed here are applied in the analysis of two example rotor-bearing systems. The first example is an electric motor supported by two ball bearings and the second is a roller test rig that consists of the tube roll of a paper machine supported by a hard-bearing-type balanceing machine. The simulation results are compared to the results available in literature as well as to those obtained by measuring the existing structure. In both practical examples, the comparison shows that the simulation model is capable of predicting the realistic responses of a rotor system. The simulation approaches developed in this work can be used in the analysis of the superharmonic vibrations of general rotor-bearing systems.
Resumo:
A novel rotor velocity estimation scheme applicable to vector controlled induction motors has been described. The proposed method will evaluate rotor velocity, ωr, on-line, does not require any extra transducers or injection of any signals, nor does it employ complicated algorithms such as MRAS or Kalman filters. Furthermore, the new scheme will operate at all velocities including zero with very little error. The procedure employs motor model equations, however all differential and integral terms have been eliminated giving a very fast, low-cost, effective and practical alternative to the current available methods. Simulation results verify the operation of the scheme under ideal and PWM conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A simplified CFD wake model based on the actuator disk concept is used to simulate the wind turbine, represented by a disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming non-uniform flow. The rotor is supposed to be uniformly loaded, with the exerted forces function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is tested under different parameterizations of turbulence models and validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit and turbulence intensity.
Resumo:
Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different characterization of the characteristic azimuthal length and a calculation of the ratio of specific heats based on a polytropic exponent. Thanks to these new values, the model predicts two bifurcation points in the behaviour of the flow: the inception point of the instability and the surge point. Experimental data from a pure axial compressor are used to validate the model showing that the prediction of the flow coefficient at the surge point has an error inferior to 5%. For the rotor studied, the paper provides a quantitative and qualitative description of the inception of the instability and of the mechanism involved in the instable region of the compressor map. The paper also discusses the role of rotor efficiency in the position of the bifurcations and gives a sensitivity analysis of its position. Finally, it presents a discussion about how the model can explain the different behaviours exhibited by the same rotor when the flow coefficient is reduced
Resumo:
A relation between Cost Of Energy, COE, maximum allowed tip speed, and rated wind speed, is obtained for wind turbines with a given goal rated power. The wind regime is characterised by the corresponding parameters of the probability density function of wind speed. The non-dimensional characteristics of the rotor: number of blades, the blade radial distributions of local solidity, twist angle, and airfoil type, play the role of parameters in the mentioned relation. The COE is estimated using a cost model commonly used by the designers. This cost model requires basic design data such as the rotor radius and the ratio between the hub height and the rotor radius. Certain design options, DO, related to the technology of the power plant, tower and blades are also required as inputs. The function obtained for the COE can be explored to �nd those values of rotor radius that give rise to minimum cost of energy for a given wind regime as the tip speed limitation changes. The analysis reveals that iso-COE lines evolve parallel to iso-radius lines for large values of limit tip speed but that this is not the case for small values of the tip speed limits. It is concluded that, as the tip speed limit decreases, the optimum decision for keeping minimum COE values can be: a) reducing the rotor radius for places with high weibull scale parameter or b) increasing the rotor radius for places with low weibull scale parameter
Resumo:
Trabalho apresentado na Conferência CPE-POWERENG 2016, 29 junho a 01 de julho 2016, Bydgoszcz, Polónia