998 resultados para rotary systems
Resumo:
Soil tillage may influence CO2 emissions in agricultural systems. Agricultural soils are managed in several ways in Brazil, ranging from no tillage to intensive land preparation. The objective of this study was to determine the effect of common soil tillage treatments (disk harrow, reversible disk plow, rotary tiller and chisel plow tillage systems) on the intermediate CO2 emissions of a dark red latosol, located in southern Brazil. Different tillage systems produced significant differences in the CO2 emissions, and the results indicate that the chisel plow produced the highest soil carbon loss during the 15 days period after tillage treatments were performed. Emissions to the atmosphere increased as much as 74 g CO2 m(-2), at the end of a 2-week period, in the plot where the chisel plow treatment was applied, in comparison to the non-disturbed plot. The results indicate that the total increase on the intermediate term soil CO2 emissions due to tillage treatments in southern Brazil is comparable to that reported for the more humid and cooler regions. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
Stopping the increase of atmospheric CO2 level is an important task and information on how to implement adjustments on tillage practices could help lower Soil CO2 emissions would be helpful. We describe how rotary tiller use on a red latosol affected Soil CO2 efflux. The impact of changing blade rotation speed and rear shield position on soil CO2 efflux was investigated. Significant differences among treatments were observed up to 10 days after tillage. Cumulative CO2 efflux was as much as 40% greater when blade rotation of 216 rpm and a lowered rear shield was compared to blade rotation of 122 rpm and raised shield. This preliminary work suggests that adjusting rotary tiller settings could help reduce CO2 efflux close to that of undisturbed soil, thereby helping to conserve soil carbon in tropical environments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The present study evaluated by cone-beam computed tomography (CBCT) the apical canal transportation and centralizing ability of different automated systems after root canal preparation. The mesiobuccal canals of maxillary first molars (n=10 per group) were prepared with: GI - reciprocating system with K-Flexofile; GII - reciprocating system with NiTiFlex files; GIII - rotary system with K3 instruments; GIV - rotary system with RaCe instruments. CBCT scans were taken before and after biomechanical preparation up to a #40.02 diameter. Canal transportation was determined by measuring the smallest distance between the inner canal walls and the mesial and distal sides of the root. The centralization ability corresponded to the difference between the measurements from transportation evaluation, using the linear voxel to voxel method of analysis. The mean transportation was 0.06 ± 0.14 mm, with a tendency to deviate to the mesial side of the root (n=22), with no statistically significant difference among the groups (p=0.4153). The mean centralization index was 0.15 ± 0.65 also without statistically significant difference among the groups (p=0.0881). It may be concluded that apical canal transportation and centralization ability were not influenced by the type of mechanical movement and instruments used.
Resumo:
The aim of this study was to compare two endodontic preparation systems using micro-CT analysis. Twenty-four one-rooted mandibular premolars were selected and randomly assigned to two groups. The samples (n = 12) of Group 1 were prepared using the ProTaper Universal rotary system, while Group 2 (n = 12) was prepared using the EndoEZE AET system complemented by manual apical preparation with K-type hand files up to #30. A 2.5% sodium hypochlorite solution was used in both groups for irrigating. Both groups were scanned by highresolution microcomputed tomography before and after preparation (SkyScan 1172, SkyScan, Kontich, Belgium). The root canal volume and surface area was measured before and after preparation, and the differences were calculated and analyzed for statistically significant differences using ANOVA complemented by the Tukey test (p < 0.05). The results showed no statistically significant differences between the mean volumes of dentin removal by the two systems. However, the EndoEZE AET system presented a significantly greater mean surface area compared to the ProTaper system (p < 0.05). The EndoEZE AET system enabled preparation of a greater root canal surface area when compared to the ProTaper Universal system. There seemed to be no difference in dentin volume loss between the two systems used.
Resumo:
Cleaning and shaping are important steps in the root canal treatment. Despite the technological advances in endodontics, K and Hedströen files are still widely used. In an attempt to be more effective in preparing the root canals, faster and more cutting efficient kinematic, alloys and design alternatives utilizing mechanically oscillating or rotary files are proposed. Even with all these technological innovating alternatives, the preparation of root canals remains a challenge.
Resumo:
Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the infl uence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47% and 41%, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.
Resumo:
Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, Pro Taper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the Pro Taper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1. - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the Pro Taper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (x1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
Utilisation of sorting systems’ maximum performance demands continuous conveying of goods by infeed lines to sorters. This is the case especially for sorters with one single infeed line, because the sorters’ performance is limited by the performance of the infeed line. Within this paper different infeed line constructions at the Rotary Sorter with diverse performances will be presented. The focus lies on a specific conveying system to synchronise the goods with the sorter by a performance of 6000 pieces per hour with one dynamic infeed line. By this means there is no extensive adjustment control of serial conveyors in the infeed line any longer.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.