969 resultados para reverse engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Póster presentado en EDULEARN12, International Conference on Education and New Learning Technologies, Barcelona, 2nd-4th July 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse engineering is the process of discovering the technological principles of a device, object or system through analysis of its structure, function, and operation. From a device used in clinical practice, as the corneal topographer, reverse engineering will be used to infer physical principles and laws. In our case, reverse engineering involves taking this mechanical device apart and analyzing its working detail. The initial knowledge of the application and usefulness of the device provides a motivation that, together with the combination of theory and practice, will help the students to understand and learn concepts studied in different subjects in the Optics and Optometry degree. These subjects belong to both the core and compulsory subjects of the syllabus of first and second year of the degree. Furthermore, the experimental practice is used as transverse axis that relates theoretical concepts, technology transfer and research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicación presentada en las XVI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2011, A Coruña, 5-7 septiembre 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La salvaguardia e conservazione del Patrimonio Artistico ed Architettonico rappresentano un aspetto imprescindibile di ogni cultura, e trovano le loro fondamenta nella coscienza e conoscenza dei Beni. Il rilievo è l’operazione basilare per acquisire una conoscenza rigorosa di un oggetto nella sua geometria e in altre sue caratteristiche. Le finalità delle operazioni di rilevamento sono molteplici, dall’archiviazione a scopo di documentazione fino all’indagine conservativa volta alla diagnostica e alla progettazione di interventi. I modelli digitali, introdotti dallo sviluppo tecnologico degli ultimi decenni, permettono una perfetta conoscenza del bene, non necessitano di contatto diretto durante la fase di rilevamento e possono essere elaborati secondo le esigenze del caso. Le tecniche adottate nel Reverse Engineering si differenziano per il tipo di sensore utilizzato: quelle fotogrammetriche utilizzano sensori di tipo “passivo” e trovano oggi largo impiego nel settore dei Beni Culturali grazie agli strumenti di Structure from Motion, mentre strumenti basati su sensori di tipo “attivo” utilizzano Laser o proiezione di luce strutturata e sono in grado di rilevare con grande precisione geometrie anche molto complesse. La costruzione del modello della fontana del Nettuno e della torre Garisenda di Bologna costituiscono un valido esempio di applicazione delle tecniche di rilievo digitale, e dimostrano la validità delle stesse su oggetti di diversa dimensione in due diversi ambiti applicativi: il restauro e il monitoraggio. Gli sviluppi futuri del Reverse Engineering in questo ambito sono molteplici, e la Geomatica rappresenta senza dubbio una disciplina fondamentale per poterli realizzare.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The enormous impact of crystal engineering in modern solid state chemistry takes advantage from the connection between a typical basic science field and the word engineering. Regrettably, the engineering aspect of organic or metal organic crystalline materials are limited, so far, to descriptive structural features, sometime entangled with topological aspects, but only rarely with true material design. This should include not only the fabrication and structural description at micro- and nano-scopic level of the solids, but also a proper reverse engineering, a fundamental discipline for engineers. Translated into scientific language, the reverse crystal engineering refers to a dedicated and accurate analysis of how the building blocks contribute to generate a given material property. This would enable a more appropriate design of new crystalline material. We propose here the application of reverse crystal engineering to optical properties of organic and metal organic framework structures, applying the distributed atomic polarizability approach that we have extensively investigated in the past few years[1,2].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Engineering Education includes not only teaching theoretical fundamental concepts but also its verification during practical lessons in laboratories. The usual strategies to carry out this action are frequently based on Problem Based Learning, starting from a given state and proceeding forward to a target state. The possibility or the effectiveness of this procedure depends on previous states and if the present state was caused or resulted from earlier ones. This often happens in engineering education when the achieved results do not match the desired ones, e.g. when programming code is being developed or when the cause of the wrong behavior of an electronic circuit is being identified. It is thus important to also prepare students to proceed in the reverse way, i.e. given a start state generate the explanation or even the principles that underlie it. Later on, this sort of skills will be important. For instance, to a doctor making a patient?s story or to an engineer discovering the source of a malfunction. This learning methodology presents pedagogical advantages besides the enhanced preparation of students to their future work. The work presented on his document describes an automation project developed by a group of students in an engineering polytechnic school laboratory. The main objective was to improve the performance of a Braille machine. However, in a scenario of Reverse Problem-Based learning, students had first to discover and characterize the entire machine's function before being allowed (and being able) to propose a solution for the existing problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manufacturing organisations spend more on Business Process Improvement initiatives to make them more competitive in growing global market. This paper presents a Rapid Improvement Workshop (RIW) framework which companies can used to identify the critical factors regulating the diffusion of business process improvement in their company. The framework can then be used address how process improvement can be efficiently implemented. We use the results from case studies at Caterpillar India. The paper identifies the critical factors that contribute to the successful implementation of process improvement programs in manufacturing organisations. We further identify certain technological and cultural barriers to the implementation of process improvement programs and how Indian manufacturing companies can overcome these barriers to attain competitive advantage in the global markets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract—Computational Intelligence Systems (CIS) is one of advanced softwares. CIS has been important position for solving single-objective / reverse / inverse and multi-objective design problems in engineering. The paper hybridise a CIS for optimisation with the concept of Nash-Equilibrium as an optimisation pre-conditioner to accelerate the optimisation process. The hybridised CIS (Hybrid Intelligence System) coupled to the Finite Element Analysis (FEA) tool and one type of Computer Aided Design(CAD) system; GiD is applied to solve an inverse engineering design problem; reconstruction of High Lift Systems (HLS). Numerical results obtained by the hybridised CIS are compared to the results obtained by the original CIS. The benefits of using the concept of Nash-Equilibrium are clearly demonstrated in terms of solution accuracy and optimisation efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, smartphones have gained widespread usage. Since the advent of online application stores, hundreds of thousands of applications have become instantly available to millions of smart-phone users. Within the Android ecosystem, application security is governed by digital signatures and a list of coarse-grained permissions. However, this mechanism is not fine-grained enough to provide the user with a sufficient means of control of the applications' activities. Abuse of highly sensible private information such as phone numbers without users' notice is the result. We show that there is a high frequency of privacy leaks even among widely popular applications. Together with the fact that the majority of the users are not proficient in computer security, this presents a challenge to the engineers developing security solutions for the platform. Our contribution is twofold: first, we propose a service which is able to assess Android Market applications via static analysis and provide detailed, but readable reports to the user. Second, we describe a means to mitigate security and privacy threats by automated reverse-engineering and refactoring binary application packages according to the users' security preferences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmid DMA offers the promise of a new generation of pharmaceuticals that will address the often overlooked issue of vaccine production by offering a simple and reproducible method for producing a vaccine. Through reverse engineering, production could be reduced from up to 9 months to as little as 1 month. Simplified development and faster turn-around times means that DMA offers a solution to the vaccine crisis and will help to contain future viral outbreaks by enabling the production of a vaccine against new viral strains in the shortest possible time. Work currently being completed in the area of plasmid DMA production, purification and encapsulation will be presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When verifying or reverse-engineering digital circuits, one often wants to identify and understand small components in a larger system. A possible approach is to show that the sub-circuit under investigation is functionally equivalent to a reference implementation. In many cases, this task is difficult as one may not have full information about the mapping between input and output of the two circuits, or because the equivalence depends on settings of control inputs. We propose a template-based approach that automates this process. It extracts a functional description for a low-level combinational circuit by showing it to be equivalent to a reference implementation, while synthesizing an appropriate mapping of input and output signals and setting of control signals. The method relies on solving an exists/forall problem using an SMT solver, and on a pruning technique based on signature computation.