962 resultados para retinal pigment epithelium (RPE)
Resumo:
Purpose: To report a novel maculopathy in a patient with SCA1. To describe autofluorescence findings in family with SCA7 and associated cone-rod retinal dysfunction.Methods: 4 affected patients from two families were assessed to investigate a progressive loss of visual acuity (VA). Examinations included fundus photography, autofluorescence (AF) fundus fluorescein angiogragraphy (FFA) and optical coherence tomography. Electroretinogram (full-field) was performed in 2 affected patients. All patients had color vision testing using Ishihara pseudoisochromatic plates. Molecular analysis was performed in family 2.Results: The patient with known diagnosis of SCA1 had a visual acuity of 20/200 bilaterally and dyschromatopsia. He had saccadic pursuit. Fundus examination showed mild retinal pigment epithelium (RPE) changes at the macula. OCT showed bilateral macular serous detachment, which was not obvious at the FFA and explained his VA. AF imaging showed a central hyperfluorescence. The 45 year old proband from family 2 had a visual acuity of 200/20 and dyschromatopsia. ERG testing showed cone type dysfunction of photoreceptors. Her daughter affected at a younger age had the same ERGs findings. Fundus examination showed mild RPE changes in proband, normal findings in her daughter. AF imaging of both patients showed a ring of high density AF around the fovea. The ring was also obvious on near infrared AF. Later onset of gait imbalance led to the diagnosis of SCA7Conclusions: Within the group of spinocerebellar ataxias, only the type 7 is associated with retinal dysfunction. We present the first report of maculopathy associated with SCA1 causing severe vision loss. The ring of high density AF in SCA7 confirmed an early retinal photoreceptor dysfunction in patient with normal fundus.
Resumo:
Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.
Resumo:
ABSTRACT : The development of the retina is a very complex process, occurring through the progressive restriction of cell fates, from pluripotent cell populations to complex tissues and organs. In all vertebrate species analyzed so far, retinal differentiation starts with the generation of retinal ganglion cells (RGC)s. One of the documented key essential events in the specification of RGCs is the expression of ATHS, an atonal homolog encoding a bHLH transcription factor. Despite the putative role of master regulator of RGC differentiation, the mechanism of integrating its functions into a coherent program underlying the production of this subclass of retinal neurons has not yet been elucidated. By using chromatin immunoprecipitation combined with microarray (ChIP-on-chip) we have screened for ATH5 direct targets in the developing chick retina at two consecutive periods: E3.5 (stage HH22) and E6 (stage HH30), covering the stages of progenitor proliferation, neuroepithelium patterning, RGC specification, cell cycle exit and early neuronal differentiation. In parallel, complementary analysis with Affymetrix expression microarrays was conducted. We compared RGCs versus retina to see if the targets correspond to genes preferentially expressed in RGCs. We also precociously overexpressed ATH5 in the retina of individual embryo, and contralateral retina vas used as a control. Our integrated approach allowed us to establish a compendium of ATH5-targets and enabled us to position ATH5 in the transcription network underlying neurogenesis in the retina. Malattia Leventinese (ML) is an autosomal, dominant retinal dystrophy characterized by extracellular, amorphous deposits known as drusen, between the retinal pigment epithelium (RPE) and Bruch's membrane. On the genetic level, it has been associated with a single missense mutation (R345W) in a widely expressed gene with unknown function called EFEMP1. We determined expression patterns of the EFEMP1 gene in normal and ML human retinas. Our data shown that the upregulation of EFEMP1 is not specific to ML eye, except for the region of the ciliary body. We also analyzed the cell compartmentalization of different versions of the protein (both wild type and mutant). Our studies indicate that both abnormal expression of the EFEMP1 gene and mutation and accumulation of EFEMP 1 protein (inside or outside the cells) might contribute to the ML pathology. Résumé : 1er partie : L'ontogenèse de la rétine est un processus complexe au cours duquel des cellules progénitrices sont engagée, par vagues successives, dans des lignées où elles vont d'abord être déterminées puis vont se différencier pour finalement construire un tissu rétinien composé de cinq classes de neurones (les photorécepteurs, les cellules horizontales, bipolaires, amacrines et ganglionnaires) et d'une seule de cellules gliales (les cellules de Muller). Chez tous les vertébrés, la neurogenèse rétinienne est d'abord marquée par la production des cellules ganglionnaires (RGCs). La production de cette classe de neurone est liée à l'expression du gène ATH5 qui est un homologue du gène atonal chez la Drosophile et qui code pour un facteur de transcription de la famille des protéines basic Helix-Loop-Helix (bHLH). Malgré le rôle central que joue ATH5 dans la production des RGCs, le mécanisme qui intègre la fonction de cette protéine dans le programme de détermination neuronale et ceci en relation avec le développement de la rétine n'est pas encore élucidé. Grâce à une technologie qui permet de combiner la sélection de fragments de chromatine liant ATH5 et la recherche de séquences grâce à des puces d'ADN non-codants (ChIP-on-chip), nous avons recherché des cibles potentielles de la protéine ATH5 dans la rétine en développement. Nous avons conduit cette recherche à deux stades de développement de manière à englober la phase de prolifération cellulaire, la détermination des RGCs, la sortie du cycle cellulaire ainsi que les premières étapes de la différentiation de ces neurones. Des expériences complémentaires nous ont permis de définir les patrons d'expression des gènes sélectionnés ainsi que l'activité promotrice des éléments de régulation identifiés lors de notre criblage. Ces approches expérimentales diverses et complémentaires nous ont permis de répertorier des gènes cibles de la protéine ATH5 et d'établir ainsi des liens fonctionnels entre des voies métaboliques dont nous ne soupçonnions pas jusqu'alors qu'elles puissent être associées à la production d'une classe de neurones centraux. 2ème partie : Malattia Leventinese (ML) est une maladie génétique qui engendre une dystrophie de la rétine. Elle se caractérise par l'accumulation de dépôt amorphe entre l'épithélium pigmentaire et la membrane de Bruch et connu sous le nom de drusen. Cette maladie est liée à une simple mutation non-sens (R345W) dans un gène dénommé EFEMP1 qui est exprimé dans de nombreux tissus mais dont la fonction reste mal définie. Une étude détaillée de l'expression de ce gène dans des rétines humaines a révélé une expression à un niveau élevé du gène EFEMP1 dans divers tissus de l'oeil ML mais également dans des yeux contrôles. Alors que l'accumulation d'ARN messager EFEMP1 dans les cellules de l'épithélium pigmentaire n'est pas spécifique à ML, l'expression de ce gène dans le corps cilié n'a été observée que dans l'oeil ML. Nous avons également comparé la sécrétion de la protéine sauvage avec celle porteuse de la mutation. En résumé, notre étude révèle que le niveau élevé d'expression du gène EFEMP1 ainsi que l'accumulation de la protéine dans certains compartiments cellulaires pourraient contribuer au développement de pathologies rétiniennes liées à ML.
Resumo:
PURPOSE: To report the time course of retinal morphologic changes in a patient with acute retinal pigment epithelitis (ARPE) using spectral domain optical coherence tomography (SD-OCT). METHODS: A 30-year old man was referred for blurred vision of his right eye after five days that appeared suddenly 15 days after recovery from a flu-like syndrome. SD-OCT was performed immediately, followed by fluorescein and infracyanine angiography at eight days and then at three weeks. RESULTS: At presentation, a bubble of sub-macular deposit was observed on the right macula with central golden micronodules in a honeycomb pattern. SD-OCT showed an "anterior dislocation" of all the retinal layers up to the inner/outer segment (IS/OS) line and irregular deposits at the OS level together with thickening of the retinal pigment epithelial (RPE) layer. As visual acuity increased, eight days later, the OCT showed reduction of the sub-retinal deposits and an abnormal hyperflectivity of the sub-retinal and RPE layers was observed. The patient showed a positive serology for picornavirus. DISCUSSION: The acute SD-OCT sections of this patient with ARPE were compared with histological sections of a 35 day old Royal College of Surgeons rat. Similar findings could be observed, with preservation of the IS/OS line and accumulation of debris at the OS level, suggesting that ARPE symptoms could result from a transient phagocytic dysfunction of the RPE at the fovea, inducing reversible accumulation of undigested OS. Picornaviruses comprising enterovirus and coxsachievirus described as being associated with acute chorioretinitis. In this case, it was responsible for ARPE. CONCLUSION: We hypothesize that ARPE syndrome results from a transient dysfunction of RPE, which can occur as a post viral reaction.
Resumo:
Résumé Durant le développement embryonnaire, les cellules pigmentaires des mammifères se développent à partir de deux origines différentes : les melanocytes se développent à partir de la crête neurale alors que les cellules de la rétine pigmentaire (RP) ont une origine neuronale. Un grand nombre de gènes sont impliqués dans la pigmentation dont les gènes de la famille tyrosinase à savoir Tyr, Tyrp1 et Dct. Certaines études ont suggéré que les gènes de la pigmentation sont régulés de manière différentielle dans les mélanocytes et dans la RP. Dans ce travail, les gènes de la famille tyrosinase ont été étudiés comme modèle de la régulation des gènes de la pigmentation par des éléments régulateurs agissant à distance. II a été montré que le promoteur du gène Tyrp1pouvait induire l'expression d'un transgène uniquement dans la RP alors que ce gène est aussi exprimé dans les mélanocytes comme le montre le phénotype des souris mutantes pour Tyrp1. Ce résultat suggère que les éléments régulateurs du promoteur sont suffisants pour l'expression dans la RP mais pas pour l'expression dans les mélanocytes. J'ai donc cherché à identifier la séquence qui régule l'expression dans les mélanocytes. Un chromosome artificiel bactérien (CAB) contenant le gène Tyrp1 s'est avéré suffisant pour induire l'expression dans les mélanocytes, comme démontré par la correction du phénotype mutant. La séquence de ce CAB contient plusieurs régions très conservées qui pourraient représenter de nouveaux éléments régulateurs. Par la suite, j'ai focalisé mon analyse sur une séquence située à -I5 kb qui s'est révélée être un amplificateur spécifique aux mélanocytes comme démontré par des expériences de cultures cellulaire et de transgenèse. De plus, une analyse poussée de cet élément a révélé que le facteur de transcription Sox 10 représentait un transactivateur de cet amplificateur. Comme pour Tyrp1, la régulation du gène tyrosinase est contrôlée par différents éléments régulateurs dans les mélanocytes et la RP. Il a été montré que le promoteur de tyrosinase n'était pas suffisant pour une forte expression dans les mélanocytes et la RP. De plus, l'analyse de la région située en amont a révélé la présence d'un amplificateur nécessaire à l'expression dans les mélanocytes à la position -15 kb. Cet amplificateur n'est toutefois pas actif dans la RP mais agit comme un répresseur dans ces cellules. Ces résultats indiquent que certains éléments nécessaires à l'expression dans les deux types de cellules pigmentaires sont absents de ces constructions. Comme pour Tyrp1, j'ai en premier lieu démontré qu'un CAB était capable de corriger le phénotype albinique, puis ai inséré un gène reporter (lacZ) dans le CAB par recombinaison homologue et ai finalement analysé l'expression du reporter en transgenèse. Ces souris ont montré une expression forte du lacZ dans les mélanocytes et la RP, ce qui indique que le CAB contient les séquences régulatrices nécessaires à l'expression correcte de tyrosinase. Afin de localiser plus précisément les éléments régulateurs, j'ai ensuite généré des délétions dans le CAB et analysé l'expression du lacZ en transgenèse. La comparaison de séquences génomiques provenant de différentes espèces a permis par la suite d'identifier des régions représentant de nouveaux éléments régulateurs potentiels. En utilisant cette approche, j'ai identifié une région qui se comporte comme un amplificateur dans la RP et qui est nécessaire à l'expression de tyrosinase dans ce tissu. De plus, j'ai identifié les facteurs de transcription Mitf et Sox10 comme transactivateurs de l'amplificateur spécifique aux mélanocytes situé à -15 kb. L'identification et la caractérisation des ces éléments régulateurs des gènes tyrosinase et Tyrp1confirme donc que la régulation différentielle des gènes dans les mélanocytes et la RP est liée à des éléments régulateurs séparés. Summary Pigment cells of mammals originate from two different lineages: melanocytes arise from the neural crest, whereas cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain. A large set of genes are involved in pigmentation, including the members of the tyrosinase gene family, namely tyrosinase, Tyrp1 and Dct. Previous studies have suggested that pigmentation genes are differentially regulated in melanocytes and RPE. In this work, the tyrosinase gene family was used as a model for studying the involvement of distal regulatory elements in pigment cell-specific gene expression. The promoter of the Tyrp1 gene has been shown to drive detectable transgene expression only to the RPE, even though the gene is also expressed in melanocytes as evident from Tyrp1-mutant mice. This indicates that the regulatory elements responsible for Tyrp1 gene expression in the RPE are not sufficient for expression in melanocytes. I thus searched for a putative melanocyte-specific regulatory sequence and demonstrate that a bacterial artificial chromosome (BAC) containing the Tyrp1 gene and surrounding sequences is able to target transgenic expression to melanocytes and to rescue the Tyrp1 b (brown) phenotype. This BAC contains several highly conserved non-coding sequences that might represent novel regulatory elements. I further focused on a sequence located at -15 kb which I identified as amelanocyte-specific enhancer as shown by cell culture and transgenic mice. In addition, further functional analysis identified the transcription factor Sox10 as being able to bind and transactivate this enhancer. As for Tyrp1, tyrosinase gene regulation is mediated by different cis-regulatory elements in melanocytes and RPE. It was shown that the tyrosinase promoter was not sufficient to confer strong and specific expression in melanocytes and RPE. Moreover, analysis of tyrosinase upstream sequence, revealed the presence of a specific enhancer at position -15 kb which was necessary to confer strong expression in melanocytes. This enhancer element however failed to act as an enhancer in the RPE, but rather repressed expression. This indicates that some regulatory elements required for tyrosinase expression in both RPE and melanocytes are still missing from these constructs. As for Tyrp1, I first demonstrated that a BAC containing the Tyr gene is able to rescue the Tyr c (albino) phenotype in mice, then I inserted a lacZ reporter gene in the BAC by homologous recombination, and finally analysed the pattern of lacZ expression in transgenic mice. These mice showed strong lacZ expression in both RPE and melanocytes, indicating that the BAC contains the regulatory sequences required for proper tyrosinase expression. In order to localize more precisely these regulatory elements, I have then generated several deletions in the BAC and analysed lacZ expression in transgenic mice. Multi-species comparative genomic analysis then allowed identifying conserved sequences that potentially represent novel regulatory elements. Using this experimental approach, I identified a region that behaves as a RPE-specific enhancer and that is required for tyrosinase expression in the retina] pigment epithelium. In addition, I identified the transcription factors Mitf and Sox l0 as being transactivators of the melanocyte-specific enhancer located at -l5 kb. The identification and characterization of these tyrosinase and Tyrp1 distal regulatory element supports the idea that separate regulatory sequences mediate differential gene expression in melanocytes and RPE.
Resumo:
Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.
Resumo:
A 39-year-old female with elevated serum cobalt levels from her bilateral hip prostheses presented with a 3-week history of blurred vision in her left eye. Optical coherence tomography revealed patchy degeneration of the photoreceptor-retinal pigment epithelium (RPE) complex. The lesions were hypofluorescent on indocyanine green angiography. We postulate that this is a case of implant-related chorio-retinal cobalt toxicity.
Resumo:
The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.
Resumo:
PURPOSE: To report a large, consanguineous Algerian family affected with Leber congenital amaurosis (LCA) or early-onset retinal degeneration (EORD). METHODS: All accessible family members underwent a complete ophthalmic examination, and blood was obtained for DNA extraction. Homozygosity mapping was performed with markers flanking 12 loci associated with LCA. The 15 exons of TULP1 were sequenced. RESULTS: Seven of 30 examined family members were affected, including five with EORD and two with LCA. All patients had nystagmus, hemeralopia, mild myopia, and low visual acuity without photophobia. Fundus features were variable among EORD patients: typical spicular retinitis pigmentosa or clumped pigmented retinopathy with age-dependent macular involvement. A salt-and-pepper retinopathy with midperipheral retinal pigment epithelium (RPE) atrophy was present in the older patients with LCA, whereas the retina appeared virtually normal in the younger ones. Both scotopic and photopic electroretinograms were nondetectable. Fundus imaging revealed a perifoveal ring of increased fundus autofluorescence (FAF) in the proband, and optical coherence tomography disclosed a thinned retina, mainly due to photoreceptor loss. Linkage analysis identified a region of homozygosity on chromosome 6, region p21.3, and mutation screening revealed a novel 6-base in-frame duplication, in the TULP1 gene. CONCLUSIONS: Mutation in the TULP1 gene is a rare cause of LCA/EORD, with only 14 mutations reported so far. The observed intrafamilial phenotypic variability could be attributed to disease progression or possibly modifier alleles. This study provides the first description of FAF and quantitative reflectivity profiles in TULP1-related retinopathy.
Resumo:
PURPOSE To evaluate macular retinal ganglion cell thickness in patients with neovascular age-related macular degeneration (AMD) and intravitreal anti-vascular endothelial growth factor (VEGF) therapy. DESIGN Retrospective case series with fellow-eye comparison METHODS: Patients with continuous unilateral anti-VEGF treatment for sub- and juxtafoveal neovascular AMD and a minimum follow-up of 24 months were included. The retinal nerve fiber (RNFL) and retinal ganglion cell layer (RGCL) in the macula were segmented using an ETDRS grid. RNFL and RGCL thickness of the outer ring of the ETDRS grid were quantified at baseline and after repeated anti-VEGF injections, and compared to the patients' untreated fellow eye. Furthermore, best-corrected visual acuity (BCVA), age, and retinal pigment epithelium (RPE) atrophy were recorded and correlated with RNFL and RGCL. RESULTS Sixty eight eyes of 34 patients (23 female and 11 male; mean age 76.7 (SD±8.2) with a mean number of 31.5 (SD ±9.8) anti-VEGF injections and a mean follow-up period of 45.3 months (SD±10.5) were included. Whereas the RGCL thickness decreased significantly compared to the non-injected fellow eye (p=0.01) the decrease of the RNFL was not significant. Visual acuity gain was significantly correlated with RGCL thickness (r=0.52, p<0.05) at follow-up and negatively correlated (r=-0.41, p<0.05) with age. Presence of RPE atrophy correlated negatively with the RGCL thickness at follow-up (r= -0.37, p=0.03). CONCLUSION During the course of long term anti-VEGF therapy there is a significant decrease of the RGCL in patients with neovascular AMD to the fellow (untreated) eye.
Resumo:
This study evaluates hypercholesterolemic rabbits, examining the retinal changes in Müller cells and astrocytes as well as their variations after a period of normal blood-cholesterol values induced by a standard diet. New Zealand rabbits were divided into three groups: G0, fed a standard diet; G1A, fed a 0.5% cholesterol-enriched diet for 8 months; and G1B, fed as G1A followed by standard diet for 6 months. Eyes were processed for transmission electron microscopy and immunohistochemistry (GFAP). While G1B resembled G0 more than did G1A, they shared alterations with G1A: a) as in G1A, Müller cells were GFAP+, filled spaces left by axonal degeneration, formed glial scars and their nuclei were displaced to the nerve-fibre layer. The area occupied by the astrocytes associated with the nerve-fibre bundles (AANFB) and by perivascular astrocytes (PVA) in G1A and G1B was significantly lower than in controls. However, no significant differences in PVA were found between G1A and G1B. In G1B, type I PVA was absent and replaced by hypertrophic type II cells; b) Bruch's membrane (BM) was thinner in G1B than in G1A; c) the retinal pigment epithelium (RPE) cytoplasm contained fewer lipids in G1B than in G1A; d) in G1A and G1B choriocapillaris and retinal vessel showed alterations with respect to G0; e) cell death and axonal degeneration in the retina were similar in G1A and G1B. The substitution of a hyperlipemic diet by a standard one normalizes blood-lipid levels. However, the persistence of damage at retinal vessels and BM-RPE could trigger chronic ischemia.
Resumo:
The aim of this study is to report a clinical case of asymptomatic female Caucasian children with torpedo maculopathy. A 5-year-old girl was referred to our clinic for routine evaluation. The ophthalmic examination revealed best-corrected visual acuity of 20/20 in both eyes, without any changes in the biomicroscopy. Fundus examination showed normal findings in one eye, whereas in the contralateral eye it disclosed, in the temporal sector of the macular region, a whitish, atrophic, oval chorioretinal lesion with clearly defined margins. Posterior evaluations documented the stability of the lesion. Torpedo maculopathy diagnosis is based on its characteristic shape and peculiar location. The differential diagnosis has to be established versus choroidal lesions (melanoma and nevus), congenital or iatrogenic hyperplasia of the retinal pigment epithelium (RPE) and particularly versus the congenital pigmented lesions associated with Gardner's syndrome.
Resumo:
Objective: To report a case of retinal toxicity associated with efavirenz in an adult. Methods: We describe a case of gradual-onset blurry vision in both eyes in a 37-year-old HIV Caucasian woman, on antiretroviral therapy (ART), including efavirenz. Results: The patient presented with a best corrected visual acuity of 20/100 for the right eye (RE) and 20/125 for the left eye (LE). Fundoscopy revealed mottled atrophic changes of the macular retinal pigment epithelium (RPE) in both eyes. Fluorescein angiography revealed an annular pattern of RPE atrophy in both eyes. Full-field electretinography (ERG) was normal. Conclusions: Based on our patient’s history and on previous reports, efavirenz seems to be the culprit in this case. Our report provides evidence in support of routine ophthalmological evaluation of patients on efavirenz.
Resumo:
RESUMO: A retina é composta, entre outras estruturas, pelo epitélio pigmentar da retina (EPR)e pela coróide. A região central da retina denomina-se mácula, e é a zona mais afetada na degenerescência macular relacionada com a idade, a forma mais comum de degenerescência da retina. Nesta doença, a secreção de fatores de crescimento pelo EPR é afetada, nomeadamente a do fator de crescimento vascular endotelial (VEGF), e pouco se sabe ainda sobre os mecanismos moleculares conducentes a esta condição. A família de proteínas Rab GTPases está envolvida nas vias intracelulares de sinalização e tráfego membranares, essenciais na transdução de sinais extracelulares em respostas biológicas. A sua crucial importância nestes mecanismos levou-nos a considerar o seu potencial envolvimento nas vias de secreção do VEGF, e a questionar-nos se teriam algum papel regulador sobre as mesmas. O principal objetivo deste trabalho é identificar Rab GTPases importantes para as vias de secreção e endocitose do VEGF no EPR. Essa identificação ajudará a esclarecer a patogénese da degenerescência macular da retina, e poderá servir para uma procura mais direcionada de novos agentes terapêuticos. A caracterização de dois modelos in vitro do EPR, células primárias isoladas de murganho e a linha celular B6-RPE07,levou-nos a concluir que são ambos semelhantes. Contudo, a linha celular foi escolhida como protótipo do EPR por permitir o acesso a um número ilimitado de células. No decurso deste trabalho, desenvolvemos e caracterizámos uma biblioteca de ferramentas moleculares que nos permitiram reduzir os níveis proteicos das proteínas Rab GTPases, com base na tecnologia de ácido ribonucleico (ARN) de interferência. O papel das proteínas Rab GTPases na secreção do VEGF no EPR foi estudado com base no silenciamento de apenas uma proteína, ou combinando várias, segundo a sua localização e funções intracelulares descritas. Este trabalho permitiu-nos concluir que as proteínas Rab GTPases são importantes intervenientes no processo de secreção de VEGF pelo EPR, e confirmar dados anteriores que relatam o envolvimento de algumas Rab GTPases endocíticas no processo. Propomos ainda um novo modelo para a interação destas proteínas no EPR, e sugerimos que a Rab10 e a Rab14 atuam negativamente sobre a Rab8, controlando o seu funcionamento. Os nossos resultados evidenciam a importância das proteínas Rab GTPases na secreção do VEGF pelas células do EPR, e servem de base a futuros estudos que melhor procurem compreender este mecanismo e de que modo a sua alteração se relaciona com a degenerescência da retina.--------ABSTRACT: Retinal pigment epithelium (RPE) and choroid are components of the mammalian retina, of which the central region is called macula. The most common form of retinaldegeneration, age-related macular degeneration (AMD), involves primarily deregulation of growth factors secretion by the RPE. Very little is known about the molecular mechanisms that lead to impairment of RPE’s homeostatic intracellular processes, namely the secretion of vascular endothelial growth factor (VEGF). Rab GTPases’ family regulates membrane targeting and traffic, being essential in the transduction of signal pathways. Given Rab proteins’ role in intracellular trafficking, we propose to identify key regulatory Rab proteins involved in either the secretory or the recycling pathways of VEGF in RPE. Understanding how Rab proteins’ function disruption could lead to retinal and choroidal pathology would ultimately contribute to find new therapeutic agents. Here, we characterized two mouse RPE in vitro cell models, primary cells and B6-RPE07 cell line, and concluded that both display important epithelial features as the RPE presents in vivo. Considering unlimited cell number and results reproducibility, we chose B6-RPE07 cells to further study Rab proteins’ function. To scrutinize the consequences of Rab proteins’ absence or diminished levels, we have developed novel molecular tools to achieve silencing of these key proteins using miRNA technology. We further addressed the effect of Rab proteins’ absence on VEGF secretion by performing an extensive screening where different Rab proteins were silenced, both individually and in multiple combinations considering their cellular/ compartment location. We conclude that Rab GTPases are important intervenients in VEGF secretion by RPE cells, confirming endocytic Rab proteins’ role in regulation of VEGF biology. We also propose a novel model for Rab proteins’ interaction in RPE. Our results suggest that Rab10 and Rab14 might influence Rab8 in a negative feedback mechanism, important for controlling VEGF secretion. Our achievements’ unravel Rab proteins’ role in VEGF secretion by RPE cells and are the basis for future studies to better understand RPE molecular secretory machinery.
Resumo:
BACKGROUND: In the Western world, a major cause of blindness is age-related macular degeneration (AMD). Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the "wet" form of AMD. In contrast, very little is known about the mechanisms of the predominant, "dry" form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD. METHODS AND FINDINGS: We here show that deficiency of CD36, which participates in outer segment (OS) phagocytosis by the retinal pigment epithelium (RPE) in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR) and CD36-/- mice). Furthermore, these animals developed significant age related choroidal involution reflected in a 100%-300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF) expression upon OS or antibody stimulation in vitro. CD36-/- mice express reduced levels of COX2 and VEGF in vivo, and COX2-/- mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency. CONCLUSIONS: CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.