986 resultados para retinal ganglion cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the population of intrinsically photosensitive retinal ganglion cells (melanopsin-expressing RGCs, m+RGCs) in P23H-1 rats, a rat model of inherited photoreceptor degeneration. Methods: At postnatal (P) times P30, P365, and P540, retinas from P23H dystrophic rats (line 1, rapid degeneration; and line 3, slow degeneration) and Sprague Dawley (SD) rats (control) were dissected as whole-mounts and immunodetected for melanopsin and/or Brn3a. The dendritic arborization of m+RGCs and the numbers of Brn3a+RGCs and m+RGCs were quantified and their retinal distribution and coexpression analyzed. Results: In SD rats, aging did not affect the population of Brn3a+RGCs or m+RGCs or the percentage that showed coexpression (0.27%). Young P23H-1 rats had a significantly lower number of Brn3a+RGCs and showed a further decline with age. The population of m+RGCs in young P23H-1 rats was similar to that found in SD rats and decreased by 22.6% and 28.2% at P365 and P540, respectively, similarly to the decrease of the Brn3a+RGCs. At these ages the m+RGCs showed a decrease of their dendritic arborization parameters, which was similar in both the P23H-1 and P23H-3 lines. The percentage of coexpression of Brn3a was, however, already significantly higher at P30 (3.31%) and increased significantly with age (10.65% at P540). Conclusions: Inherited photoreceptor degeneration was followed by secondary loss of Brn3a+RGCs and m+RGCs. Surviving m+RGCs showed decreased dendritic arborization parameters and increased coexpression of Brn3a and melanopsin, phenotypic and molecular changes that may represent an effort to resist degeneration and/or preferential survival of m+RGCs capable of synthesizing Brn3a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. In Old World primates, the retina receives input from histaminergic neurons in the posterior hypothalamus. They are a subset of the neurons that project throughout the central nervous system and fire maximally during the day. The contribution of these neurons to vision, was examined by applying histamine to a dark-adapted, superfused baboon eye cup preparation while making extracellular recordings from peripheral retinal ganglion cells. METHODS. The stimuli were 5-ms, 560-nm, weak, full-field flashes in the low scotopic range. Ganglion cells with sustained and transient ON responses and two cell types with OFF responses were distinguished; their responses were recorded with a 16-channel microelectrode array. RESULTS. Low micromolar doses of histamine decreased the rate of maintained firing and the light sensitivity of ON ganglion cells. Both sustained and transient ON cells responded similarly to histamine. There were no statistically significant effects of histamine in a more limited study of OFF ganglion cells. The response latencies of ON cells were approximately 5 ms slower, on average, when histamine was present. Histamine also reduced the signal-to-noise ratio of ON cells, particularly in those cells with a histamine-induced increase in maintained activity. CONCLUSIONS. A major action of histamine released from retinopetal axons under dark-adapted conditions, when rod signals dominate the response, is to reduce the sensitivity of ON ganglion cells to light flashes. These findings may relate to reports that humans are less sensitive to light stimuli in the scotopic range during the day, when histamine release in the retina is expected to be at its maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between cholinergic sensitivity and the level of stratification for ganglion cells was examined in the rabbit retina. As examples, we have used ON or OFF alpha ganglion cells and ON/OFF directionally selective (DS) ganglion cells. Nicotine, a cholinergic agonist, depolarized ON/OFF DS ganglion cells and greatly enhanced their firing rates but it had modest excitatory effects on ON or OFF alpha ganglion cells. As previously reported, we conclude that DS ganglion cells are the most sensitive to cholinergic drugs. Confocal imaging showed that ON/OFF DS ganglion cells ramify precisely at the level of the cholinergic amacrine cell dendrites, and co-fasciculate with the cholinergic matrix of starburst amacrine cells. However, neither ON or OFF alpha ganglion cells have more than a chance association with the cholinergic matrix. Z -axis reconstruction showed that OFF alpha ganglion cells stratify just below the cholinergic band in sublamina a while ON alpha ganglion cells stratify just below cholinergic b . The latter is at the same level as the terminals of calbindin bipolar cells. Thus, the calbindin bipolar cell appears to be a prime candidate to provide the bipolar cell input to ON alpha ganglion cells in the rabbit retina. We conclude that the precise level of stratification is correlated with the strength of cholinergic input. Alpha ganglion cells receive a weak cholinergic input and they are narrowly stratified just below the cholinergic bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents structural, immunochemical and neurochemical evidence for glutamatergic retinotectal synaptic transmission, augmenting and extending previous physiological and anatomical studies. The evidence is especially striking when the laminar patterns of ($\sp3$H) L-glutamate receptor binding, ($\sp3$H) L-glutamate high affinity uptake (HAU) and glutamate immunoreactivity (GLIR) of the dorsal tectum are compared. All show high activity in the tectal SGFS, with a peak in the most superficial laminae of SGFS followed by dip in the b-c region, and a second broad peak in deeper SGFS. Uptake and immunoreactivity bear a stronger resemblance to one another than either does to receptor binding, consistent with the fact that HAU and GLIR are localized in the same structures: glutamatergic terminals, intrinsic cell bodies and their processes. Receptor binding, as attested by the lack of enucleation effects, is a marker of postsynaptic receptors. In summary, these results are consistent with the hypothesis that most of the retinal projection to the optic tectum is glutamatergic: (1) A glutamate/aspartate HAU system exists in the superficial laminae, and it is dependent upon an intact retinal input, as shown developmentally and by retinal ablation; (2) Glutamate-like immunoreactivity appears in retinorecipient tectal regions (partially responsive to enucleation), in cell bodies of retinal ganglion cells and displaced ganglion cells, and in a non-tectal ganglion cell projection, the ectomammilary nucleus; (3) Sodium-independent glutamate receptor binding (which remains unchanged by enucleation) is most intense in the retinorecipient regions of the tectum and the ectomammilary nucleus. This binding is pharmacologically typical of a CNS sensory structure, being dominated by the quisqualate/kainate receptor subclass. Thus, as with other sensory systems, a portion of the retinotectal projection has been shown to include glutamatergic afferents with the distribution and properties expected of the primary projection ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ganglion cells carry signals from the eye to the brain. One of the most common types of ganglion cells is parasol cells. They have larger dendritic trees, somas and axons than other ganglion cells. While much was known about parasol cell light responses, little was known about how these responses are formed. One possibility is that they receive input from a unique set of local circuit neurons that have similar responses. The goal was to identify these presynaptic neurons and study their synaptic connectivity.^ Ganglion cells receive input from bipolar and amacrine cells, but there are numerous subtypes of each. To determine which of these were most likely to provide input to parasol cells, the parasol cells were intracellularly-injected and then various bipolar and amacrine cells were immunolabeled and the tissue analyzed using a confocal microscope. DB3 bipolar cells labeled with antibodies to calbindin made extensive contacts with OFF parasol cells. Antibodies to recover in labeled flat midget bipolar cells (FMB). They made only random contacts with OFF parasol cells, and they are not expected to provide significant input. Type DB2 bipolar cells and FMB cells labeled with antibodies to excitatory amino acid transporter-2 made extensive contacts with OFF parasol cells. This suggests that DB2 bipolar cells are likely to provide input to parasol cells.^ Two types of amacrine cells were labeled in material containing injected parasol cells. Cholinergic amacrine cells were labeled with antibodies to choline acetyltransferase, and they made extensive contacts with ON parasol cells. The large amacrine cells labeled with antibodies to a precursor of cholecystokinin were among the amacrine cells that are tracer-coupled to parasol cells.^ From electron microscopic (EM) analysis, most of the synapses made by DB3 axons were found on varicosities. Some postsynaptic and presynaptic amacrine cells resembled AII amacrine cells. Others were relatively electron-lucent and may be cholinergic amacrine cells or cholecystokinin-containing amacrine cells. Gap junctions were found between neighboring DB3 axons. They occurred whenever two axons contacted each other, and the junctions were as large as the area of contact. In double-label EM experiments, DB3 axons made synapses onto OFF parasol cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY IN FRENCH Les cellules souches sont des cellules indifférenciées capables a) de proliférer, b) de s'auto¬renouveller, c) de produire des cellules différenciées, postmitotiques et fonctionnelles (multipotencialité), et d) de régénérer le tissu après des lésions. Par exemple, les cellules de souches hematopoiétiques, situées dans la moelle osseuse, peuvent s'amplifier, se diviser et produire diverses cellules différenciées au cours de la vie, les cellules souches restant dans la moelle osseuse et consentant leur propriété. Les cellules souches intestinales, situées dans la crypte des microvillosités peuvent également régénérer tout l'intestin au cours de la vie. La rétine se compose de six classes de neurones et d'un type de cellule gliale. Tous ces types de cellules sont produits par un progéniteur rétinien. Le pic de production des photorécepteurs se situe autour des premiers jours postnatals chez la souris. A cette période la rétine contient les cellules hautement prolifératives. Dans cette étude, nous avons voulu analyser le phénotype de ces cellules et leur potentiel en tant que cellules souches ou progénitrices. Nous nous sommes également concentrés sur l'effet de certains facteurs épigéniques sur leur destin cellulaire. Nous avons observé que toutes les cellules prolifératives isolées à partir de neurorétines postnatales de souris expriment le marqueur de glie radiaire RC2, ainsi que des facteurs de transcription habituellement trouvés dans la glie radiaire (Mash1, Pax6), et répondent aux critères des cellules souches : une capacité élevée d'expansion, un état indifférencié, la multipotencialité (démontrée par analyse clonale). Nous avons étudié la différentiation des cellules dans différents milieux de culture. En l'absence de sérum, l'EGF induit l'expression de la β-tubulin-III, un marqueur neuronal, et l'acquisition d'une morphologie neuronale, ceci dans 15% des cellules présentes. Nous avons également analysé la prolifération de cellules. Seulement 20% des cellules incorporent le bromodéoxyuridine (BrdU) qui est un marqueur de division cellulaire. Ceci démontre que l'EGF induit la formation des neurones sans une progression massive du cycle cellulaire. Par ailleurs, une stimulation de 2h d'EGF est suffisante pour induire la différentiation neuronale. Certains des neurones formés sont des cellules ganglionnaires rétiniennes (GR), comme l'indique l'expression de marqueurs de cellules ganglionnaires (Ath5, Brn3b et mélanopsine), et dans de rare cas d'autres neurones rétiniens ont été observés (photorécepteurs (PR) et cellules bipolaires). Nous avons confirmé que les cellules souches rétiniennes tardives n'étaient pas restreintes au cours du temps et qu'elles conservent leur multipotencialité en étant capables de générer des neurones dits précoces (GR) ou tardifs (PR). Nos résultats prouvent que l'EGF est non seulement un facteur contrôlant le développement glial, comme précédemment démontré, mais également un facteur efficace de différentiation pour les neurones rétiniens, du moins in vitro. D'autre part, nous avons voulu établir si l'oeil adulte humain contient des cellules souches rétiniennes (CSRs). L'oeil de certains poissons ou amphibiens continue de croître pendant l'âge adulte du fait de l'activité persistante des cellules souches rétiniennes. Chez les poissons, le CSRs se situe dans la marge ciliaire (CM) à la périphérie de la rétine. Bien que l'oeil des mammifères ne se développe plus pendant la vie d'adulte, plusieurs groupes ont prouvé que l'oeil de mammifères adultes contient des cellules souches rétiniennes également dans la marge ciliaire plus précisément dans l'épithélium pigmenté et non dans la neurorétine. Ces CSRs répondent à certains critères des cellules souches. Nous avons identifié et caractérisé les cellules souches rétiniennes résidant dans l'oeil adulte humain. Nous avons prouvé qu'elles partagent les mêmes propriétés que leurs homologues chez les rongeurs c.-à-d. auto-renouvellement, amplification, et différenciation en neurones rétiniens in vitro et in vivo (démontré par immunocoloration et microarray). D'autre part, ces cellules peuvent être considérablement amplifiées, tout en conservant leur potentiel de cellules souches, comme indiqué par l'analyse de leur profil d'expression génique (microarray). Elles expriment également des gènes communs à diverses cellules souches: nucleostemin, nestin, Brni1, Notch2, ABCG2, c-kit et son ligand, aussi bien que cyclin D3 qui agit en aval de c-kit. Nous avons pu montré que Bmi1et Oct4 sont nécessaires pour la prolifération des CSRs confortant leur propriété de cellules souches. Nos données indiquent que la neurorétine postnatale chez la souris et l'épithélium pigmenté de la marge ciliaire chez l'humain adulte contiennent les cellules souches rétiniennes. En outre, nous avons développé un système qui permet d'amplifier et de cultiver facilement les CSRs. Ce modèle permet de disséquer les mécanismes impliqués lors de la retinogenèse. Par exemple, ce système peut être employé pour l'étude des substances ou des facteurs impliqués, par exemple, dans la survie ou dans la génération des cellules rétiniennes. Il peut également aider à disséquer la fonction de gènes ou les facteurs impliqués dans la restriction ou la spécification du destin cellulaire. En outre, dans les pays occidentaux, la rétinite pigmentaire (RP) touche 1 individu sur 3500 et la dégénérescence maculaire liée à l'âge (DMLA) affecte 1 % à 3% de la population âgée de plus de 60 ans. La génération in vitro de cellules rétiniennes est aussi un outil prometteur pour fournir une source illimitée de cellules pour l'étude de transplantation cellulaire pour la rétine. SUMMARY IN ENGLISH Stem cells are defined as undifferentiated cells capable of a) proliferation, b) self maintenance (self-renewability), c) production of many differentiated functional postmitotic cells (multipotency), and d) regenerating tissue after injury. For instance, hematopoietic stem cells, located in bone marrow, can expand, divide and generate differentiated cells into the diverse lineages throughout life, the stem cells conserving their status. In the villi crypt, the intestinal stem cells are also able to regenerate the intestine during their life time. The retina is composed of six classes of neurons and one glial cell. All these cell types are produced by the retinal progenitor cell. The peak of photoreceptor production is reached around the first postnatal days in rodents. Thus, at this stage the retina contains highly proliferative cells. In our research, we analyzed the phenotype of these cells and their potential as possible progenitor or stem cells. We also focused on the effect of epigenic factor(s) and cell fate determination. All the proliferating cells isolated from mice postnatal neuroretina harbored the radial glia marker RC2, expressed transcription factors usually found in radial glia (Mash 1, Pax6), and met the criteria of stem cells: high capacity of expansion, maintenance of an undifferentiated state, and multipotency demonstrated by clonal analysis. We analyzed the differentiation seven days after the transfer of the cells in different culture media. In the absence of serum, EGF led to the expression of the neuronal marker β-tubulin-III, and the acquisition of neuronal morphology in 15% of the cells. Analysis of cell proliferation by bromodeoxyuridine incorporation revealed that EGF mainly induced the formation of neurons without stimulating massively cell cycle progression. Moreover, a pulse of 2h EGF stimulation was sufficient to induce neuronal differentiation. Some neurons were committed to the retinal ganglion cell (RGC) phenotype, as revealed by the expression of retinal ganglion markers (Ath5, Brn3b and melanopsin), and in few cases to other retinal phenotypes (photoreceptors (PRs) and bipolar cells). We confirmed that the late RSCs were not restricted over-time and conserved multipotentcy characteristics by generating retinal phenotypes that usually appear at early (RGC) or late (PRs) developmental stages. Our results show that EGF is not only a factor controlling glial development, as previously shown, but also a potent differentiation factor for retinal neurons, at least in vitro. On the other hand, we wanted to find out if the adult human eye contains retina stem cells. The eye of some fishes and amphibians continues to grow during adulthood due to the persistent activity of retinal stem cells (RSCs). In fish, the RSCs are located in the ciliary margin zone (CMZ) at the periphery of the retina. Although, the adult mammalian eye does not grow during adult life, several groups have shown that the adult mouse eye contains retinal stem cells in the homologous zone (i.e. the ciliary margin), in the pigmented epithelium and not in the neuroretina. These RSCs meet some criteria of stem cells. We identified and characterized the human retinal stem cells. We showed that they posses the same features as their rodent counterpart i.e. they self-renew, expand and differentiate into retinal neurons in vitro and in vivo (indicated by immunostaining and microarray analysis). Moreover, they can be greatly expanded while conserving their sternness potential as revealed by the gene expression profile analysis (microarray approach). They also expressed genes common to various stem cells: nucleostemin, nestin, Bmil , Notch2, ABCG2, c-kit and its ligand, as well as cyclin D3 which acts downstream of c-kit. Furthermore, Bmil and Oct-4 were required for RSC proliferation reinforcing their stem cell identity. Our data indicate that the mice postnatal neuroretina and the adult pigmented epithelium of adult human ciliary margin contain retinal stem cells. We developed a system to easily expand and culture RSCs that can be used to investigate the retinogenesis. For example, it can help to screen drugs or factors involved, for instance, in the survival or generation of retinal cells. This could help to dissect genes or factors involved in the restriction or specification of retinal cell fate. In Western countries, retinitis pigmentosa (RP) affects 1 out of 3'500 individuals and age-related macula degeneration (AMD) strikes 1 % to 3% of the population over 60. In vitro generation of retinal cells is thus a promising tool to provide an unlimited cell source for cellular transplantation studies in the retina.