938 resultados para restoration
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
Aquatic Ecosystems perform numerous valuable environmental functions. They recycle nutrients, purify water, recharge ground water, augment and maintain stream flow, and provide habitat for a wide variety of flora and fauna and recreation for people. A rapid population increase accompanied by unplanned developmental works has led to the pollution of surface waters due to residential, agricultural, commercial and industrial wastes/effluents and decline in the number of water bodies. Increased demands for drainage of wetlands have been accommodated by channelisation, resulting in further loss of stream habitat, which has led to aquatic organisms becoming extinct or imperiled in increasing numbers and to the impairment of many beneficial uses of water, including drinking, swimming and fishing. Various anthropogenic activities have altered the physical, chemical and biological processes within aquatic ecosystems. An integrated and accelerated effort toward environmental restoration and preservation is needed to stop further degradation of these fragile ecosystems. Failure to restore these ecosystems will result in sharply increased environmental costs later, in the extinction of species or ecosystem types, and in permanent ecological damage.
Resumo:
Four-dimensional fluorescence microscopy-which records 3D image information as a function of time-provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.
Resumo:
In the current study, correlation of microstructure evolution with bulk crystallographic texture formation during friction stir processing (FSP) of commercial aluminum alloys has been attempted. Electron back-scattered diffraction and X-ray diffraction techniques were employed for characterizing the nugget zone of optimum friction stir processed samples. Volume fraction of measured texture components revealed that the texture formation in aluminum alloys is similar irrespective of the alloy composition. Recrystallization behavior during FSP was more of a composition dependent phenomenon.
Resumo:
In this paper we derive the a posteriori probability for the location of bursts of noise additively superimposed on a Gaussian AR process. The theory is developed to give a sequentially based restoration algorithm suitable for real-time applications. The algorithm is particularly appropriate for digital audio restoration, where clicks and scratches may be modelled as additive bursts of noise. Experiments are carried out on both real audio data and synthetic AR processes and Significant improvements are demonstrated over existing restoration techniques. © 1995 IEEE
Restoration of images and 3D data to higher resolution by deconvolution with sparsity regularization