832 resultados para resting interval
Resumo:
The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.
Resumo:
Through the application of process mining, valuable evidence-based insights can be obtained about business processes in organisations. As a result the field has seen an increased uptake in recent years as evidenced by success stories and increased tool support. However, despite this impact, current performance analysis capabilities remain somewhat limited in the context of information-poor event logs. For example, natural daily and weekly patterns are not considered. In this paper a new framework for analysing event logs is defined which is based on the concept of event gap. The framework allows for a systematic approach to sophisticated performance-related analysis of event logs containing varying degrees of information. The paper formalises a range of event gap types and then presents an implementation as well as an evaluation of the proposed approach.
Resumo:
Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.
Resumo:
This study investigated the influence of two different intensities of acute interval exercise on food preferences and appetite sensations in overweight and obese men. Twelve overweight/obese males (age=29.0±4.1 years; BMI =29.1±2.4 kg/m2) completed three exercise sessions: an initial graded exercise test, and two interval cycling sessions: moderate-(MIIT) and high-intensity (HIIT) interval exercise sessions on separate days in a counterbalanced order. The MIIT session involved cycling for 5-minute repetitions of alternate workloads 20% below and 20% above maximal fat oxidation. The HIIT session consisted of cycling for alternate bouts of 15 seconds at 85% VO2max and 15 seconds unloaded recovery. Appetite sensations and food preferences were measured immediately before and after the exercise sessions using the Visual Analogue Scale and the Liking & Wanting experimental procedure. Results indicated that liking significantly increased and wanting significantly decreased in all food categories after both MIIT and HIIT. There were no differences between MIIT and HIIT on the effect on appetite sensations and Liking & Wanting. In conclusion, manipulating the intensity of acute interval exercise did not affect appetite and nutrient preferences.
Resumo:
Background: Dysregulation of salivary immunoglobulins has been implicated in illnesses ranging from periodontal disease to HIV aids and malignant cancers. Despite these advances there is a lack of agreement among studies with regard to the salivary immunoglobulin levels in healthy controls. Methodology: Resting and mechanically stimulated saliva samples and matching serum samples were collected from healthy individuals (n = 33; 40-55 years of age; gender: 23 female, 10 male). A matrix-matched AlphaLISA((R)) assay was developed to determine the concentrations of IgG1 and IgG4 in serum and saliva samples. Conclusion: Clear relationships were observed in the flow rate and concentration of each immunoglobulin in the two types of saliva. This study affirms the need to establish and standardize collection methods before salivary IgGs are used for diagnostic purposes.
Resumo:
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Resumo:
Head motion (HM) is a critical confounding factor in functional MRI. Here we investigate whether HM during resting state functional MRI (RS-fMRI) is influenced by genetic factors in a sample of 462 twins (65% fema≤ 101 MZ (monozygotic) and 130 DZ (dizygotic) twin pairs; mean age: 21 (SD=3.16), range 16-29). Heritability estimates for three HM components-mean translation (MT), maximum translation (MAXT) and mean rotation (MR)-ranged from 37 to 51%. We detected a significant common genetic influence on HM variability, with about two-thirds (genetic correlations range 0.76-1.00) of the variance shared between MR, MT and MAXT. A composite metric (HM-PC1), which aggregated these three, was also moderately heritable (h2=42%). Using a sub-sample (N=35) of the twins we confirmed that mean and maximum translational and rotational motions were consistent "traits" over repeated scans (r=0.53-0.59); reliability was even higher for the composite metric (r=0.66). In addition, phenotypic and cross-trait cross-twin correlations between HM and resting state functional connectivities (RS-FCs) with Brodmann areas (BA) 44 and 45, in which RS-FCs were found to be moderately heritable (BA44: h2-=0.23 (sd=0.041), BA45: h2-=0.26 (sd=0.061)), indicated that HM might not represent a major bias in genetic studies using FCs. Even so, the HM effect on FC was not completely eliminated after regression. HM may be a valuable endophenotype whose relationship with brain disorders remains to be elucidated.
Resumo:
Background: The majority of studies investigating the neural mechanisms underlying treatment in people with aphasia have examined task-based brain activity. However, the use of resting-state fMRI may provide another method of examining the brain mechanisms responsible for treatment-induced recovery, and allows for investigation into connectivity within complex functional networks Methods: Eight people with aphasia underwent 12 treatment sessions that aimed to improve object naming. Half the sessions employed a phonologically-based task, and half the sessions employed a semantic-based task, with resting-state fMRI conducted pre- and post-treatment. Brain regions in which the amplitude of low frequency fluctuations (ALFF) correlated with treatment outcomes were used as seeds for functional connectivity (FC) analysis. FC maps were compared from pre- to post-treatment, as well as with a group of 12 healthy older controls Results: Pre-treatment ALFF in the right middle temporal gyrus (MTG) correlated with greater outcomes for the phonological treatment, with a shift to the left MTG and supramarginal gyrus, as well as the right inferior frontal gyrus, post-treatment. When compared to controls, participants with aphasia showed both normalization and up-regulation of connectivity within language networks post-treatment, predominantly in the left hemisphere Conclusions: The results provide preliminary evidence that treatments for naming impairments affect the FC of language networks, and may aid in understanding the neural mechanisms underlying the rehabilitation of language post-stroke.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
Abstract PURPOSE: Compensatory responses may attenuate the effectiveness of exercise training in weight management. The aim of this study was to compare the effect of moderate- and high-intensity interval training on eating behavior compensation. METHODS: Using a crossover design, 10 overweight and obese men participated in 4-week moderate (MIIT) and high (HIIT) intensity interval training. MIIT consisted of 5-min cycling stages at ± 20% of mechanical work at 45%VO(2)peak, and HIIT consisted of alternate 30-s work at 90%VO(2)peak and 30-s rests, for 30 to 45 min. Assessments included a constant-load exercise test at 45%VO(2)peak for 45 min followed by 60-min recovery. Appetite sensations were measured during the exercise test using a Visual Analog Scale. Food preferences (liking and wanting) were assessed using a computer-based paradigm, and this paradigm uses 20 photographic food stimuli varying along two dimensions, fat (high or low) and taste (sweet or nonsweet). An ad libitum test meal was provided after the constant-load exercise test. RESULTS: Exercise-induced hunger and desire to eat decreased after HIIT, and the difference between MIIT and HIIT in desire to eat approached significance (p = .07). Exercise-induced liking for high-fat nonsweet food tended to increase after MIIT and decreased after HIIT (p = .09). Fat intake decreased by 16% after HIIT, and increased by 38% after MIIT, with the difference between MIIT and HIIT approaching significance (p = .07). CONCLUSIONS: This study provides evidence that energy intake compensation differs between MIIT and HIIT.
Resumo:
This study compared fat oxidation rate from a graded exercise test (GXT) with a moderate-intensity interval training session (MIIT) in obese men. Twelve sedentary obese males (age 29 ± 4.1 years; BMI 29.1 ± 2.4 kg·m-2; fat mass 31.7 ± 4.4 %body mass) completed two exercise sessions: GXT to determine maximal fat oxidation (MFO) and maximal aerobic power (VO2max), and an interval cycling session during which respiratory gases were measured. The 30-min MIIT involved 5-min repetitions of workloads 20% below and 20% above the MFO intensity. VO2max was 31.8 ± 5.5 ml·kg-1·min-1 and all participants achieved ≥ 3 of the designated VO2max test criteria. The MFO identified during the GXT was not significantly different compared with the average fat oxidation rate in the MIIT session. During the MIIT session, fat oxidation rate increased with time; the highest rate (0.18 ± 0.11 g·min- 1) in minute 25 was significantly higher than the rate at minute 5 and 15 (p ≤ 0.01 and 0.05 respectively). In this cohort with low aerobic fitness, fat oxidation during the MIIT session was comparable with the MFO determined during a GXT. Future research may consider if the varying workload in moderate-intensity interval training helps adherence to exercise without compromising fat oxidation.
Resumo:
Background: Paediatric onset inflammatory bowel disease (IBD) may cause alterations in energy requirements and invalidate the use of standard prediction equations. Our aim was to evaluate four commonly used prediction equations for resting energy expenditure (REE) in children with IBD. Methods: Sixty-three children had repeated measurements of REE as part of a longitudinal research study yielding a total of 243 measurements. These were compared with predicted REE from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict equations using the Bland-Altman method. Results: Mean (±SD) age of the patients was 14.2 (2.4) years. Mean measured REE was 1566 (336) kcal per day compared with 1491 (236), 1441 (255), 1481 (232), and 1435 (212) kcal per day calculated from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict, respectively. While the Schofield equation demonstrated the least difference between measured and predicted REE, it, along with the other equations tested, did not perform uniformly across all subjects, indicating greater errors at either end of the spectrum of energy expenditure. Smaller differences were found for all prediction equations for Crohn's disease compared with ulcerative colitis. Conclusions: Of the commonly used equations, the equation of Schofield should be used in pediatric patients with IBD when measured values are not able to be obtained. (Inflamm Bowel Dis 2010;) Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.
Resumo:
OBJECTIVES: There is controversy in the literature regarding the effect of inflammatory bowel disease (IBD) on resting energy expenditure (REE). In many cases this may have resulted from inappropriate adjustment of REE measurements to account for differences in body composition. This article considers how to appropriately adjust measurements of REE for differences in body composition between individuals with IBD. PATIENTS AND METHODS: Body composition, assessed via total body potassium to yield a measure of body cell mass (BCM), and REE measurements were performed in 41 children with Crohn disease and ulcerative colitis in the Royal Children's Hospital, Brisbane, Australia. Log-log regression was used to determine the power function to which BCM should be raised to appropriately adjust REE to account for differences in body composition between children. RESULTS: The appropriate value to "adjust" BCM was found to be 0.49, with a standard error of 0.10. CONCLUSIONS: Clearly, there is a need to adjust for differences in body composition, or at the very least body weight, in metabolic studies in children with IBD. We suggest that raising BCM to the power of 0.5 is both a numerically convenient and a statistically valid way of achieving this aim. Under circumstances in which the measurement of BCM is not available, raising body weight to the power of 0.5 remains appropriate. The important issue of whether REE is changed in cases of IBD can then be appropriately addressed. © 2007 Lippincott Williams & Wilkins, Inc.
Resumo:
Background and Aims: The objective of the study was to compare data obtained from the Cosmed K4 b2 and the Deltatrac II™ metabolic cart for the purpose of determining the validity of the Cosmed K4 b2 in measuring resting energy expenditure. Methods: Nine adult subjects (four male, five female) were measured. Resting energy expenditure was measured in consecutive sessions using the Cosmed K4 b2, the Deltatrac II™ metabolic cart separately and the Cosmed K4 b2 and Deltatrac II™ metabolic cart simultaneously, performed in random order. Resting energy expenditure (REE) data from both devices were then compared with values obtained from predictive equations. Results: Bland and Altman analysis revealed a mean bias for the four variables, REE, respiratory quotient (RQ), VCO2, VO2 between data obtained from Cosmed K4 b2 and Deltatrac II™ metabolic cart of 268 ± 702 kcal/day, -0.0±0.2, 26.4±118.2 and 51.6±126.5 ml/min, respectively. Corresponding limits of agreement for the same four variables were all large. Also, Bland and Altman analysis revealed a larger mean bias between predicted REE and measured REE using Cosmed K4 b2 data (-194±603 kcal/day) than using Deltatrac™ metabolic cart data (73±197 kcal/day). Conclusions: Variability between the two devices was very high and a degree of measurement error was detected. Data from the Cosmed K4 b2 provided variable results on comparison with predicted values, thus, would seem an invalid device for measuring adults. © 2002 Elsevier Science Ltd. All rights reserved.