934 resultados para resonance tunneling
Resumo:
In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO(x)/Hexa NT's) doped with Co(2)+ and Ni(2+) ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co(2+), S = 3/2 and Ni(2+), S = 1) decreases notably the amount of V(4+) ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V(4+) in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3580252]
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
Study design: Evaluation of knees of tetraplegic patients who have been walking for several months with the aid of a system that involves neuromuscular stimulation, treadmill and a harness support device. Objectives: To investigate if the training program could cause knee injury to tetraplegic patients. Setting: Hospital das Clinicas - UNICAMP. Campinas-SP, Brazil. Methods: Nine patients were evaluated. Clinical exam and magnetic resonance images (MRIs) were used for evaluation. MRIs were taken before and after the training program, in a 6-month interval for each patient. There were two sessions of training every week. Each session lasted 20 min. Results: No severe clinical abnormality was observed in any patient. Mild knee injury was observed in four of nine patients studied. Conclusions: Tetraplegic patients undergoing treadmill gait training deserve a close follow-up to prevent knee injury.
Resumo:
Acoustic resonances are observed in high-pressure discharge lamps operated with ac input modulated power frequencies in the kilohertz range. This paper describes an optical resonance detection method for high-intensity discharge lamps using computer-controlled cameras and image processing software. Experimental results showing acoustic resonances in high-pressure sodium lamps are presented.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
Pharmaceuticals can exist in many solid forms, which can have different physical and chemical properties. These solid forms include polymorphs, solvates, amorphous, and hydrates. Particularly, hydration process can be quite common since pharmaceutical solids can be in contact with water during manufacturing process and can also be exposed to water during storage. In the present work, it is proved that NQR technique is capable of detecting different hydrated forms not only in the pure raw material but also in the final product (tablets), being in this way a useful technique for quality control. This technique was also used to study the dehydration process from pentahydrate to trihydrate.
Resumo:
It has been suggested that phased atomic decay in a squeezed vacuum could be detected in the fluorescence spectrum emitted from a driven two-level atom in a cavity. Recently, the existence of other very distinctive features in the fluorescence spectra arising from the nonclassical features of the squeezed vacuum has been reported. In this paper, we investigate the possibility of experimental observation of these spectra. The main obstacle to the experimentalist is ensuring an effective squeezed-vacuum-atom coupling. To overcome this problem we propose the use of a Fabry-Perot microcavity. The analysis involves a consideration of the three-dimensional nature of the electromagnetic held, and the possibility of a mismatch between the squeezed and cavity modes. The problem of squeezing bandwidths is also addressed. We show that under experimentally realistic circumstances many of the spectral anomalies predicted in free space also occur in this environment. In addition, we report large population inversions in the dressed states of the two-level atom. [S1050-2947(98)02301-4].
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
Magnetic resonance microscopy (MRM) depends on the use of high field, superconducting magnet systems for its operation. The magnets that are conventionally used are those that were initially designed for chemical structural analysis work. A novel, compact magnet designed specifically for MRM is presented here, and while preserving high field, high homogeneity conditions, has a length less than one-third that of conventional systems. This enables much better access to samples, an important consideration in many MRM experiments. As the homogeneity of a magnet is strongly dependent on its length, novel geometries and optimization techniques are required to meet the requirements of MRM in a compact system. An important outcome of the stochastic optimization performed in this work, is that the use used of a thin superconducting solenoid surrounded by counterwound disk windings provides a mechanism for drastic length reductions over conventional magnet designs. (C) 1998 American Institute of Physics.
Resumo:
We analyze the linewidth narrowing in the fluorescence spectrum of a two-level atom driven by a squeezed vacuum field of a finite bandwidth. It is found that the fluorescence spectrum in a low-intensity squeezed field can exhibit a (omega - omega(0))(-6) frequency dependence in the wings. We show that this fast fall-off behavior is intimately related to the properties of a narrow-bandwidth squeezed field and does not extend into the region of broadband excitation. We apply the Linear response model and find that the narrowing results from a convolution of the atom response with the spectrum of the incident field. On the experimental side, we emphasize that the linewidth narrowing is not sensitive to the solid angle of the squeezed modes coupled to the atom. We also compare the fluorescence spectrum with the quadrature-noise spectrum and find that the fluorescence spectrum for an off-resonance excitation does not reveal the noise spectrum. We show that this difference arises from the competing three-photon scattering processes. [S1050-2947(98)04308-X].
Resumo:
We study the resonance fluorescence from two interacting atoms driven by a squeezed vacuum field and show that this system produces an interference pattern with a dark center. We discuss the role of the interatomic interactions in this process and find that the interference pattern results from an unequal population of the symmetric and antisymmetric states of the two-atom system. We also identify intrinsically nonclassical effects versus classical squeezed field effects, (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement backaction noise alone.
Resumo:
A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices. This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the population master equation by adiabatic elimination of quantum coherences in the presence of elastic scattering. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong tunneling between the wells. The method is an alternative to Green's function methods and population master equations for very small coherently coupled quantum dots.
Resumo:
Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.
Resumo:
alpha-Conotoxin ImI derives from the venom of Conus imperialis and is the first and only small-peptide ligand that selectively binds to the neuronal alpha(7) homopentameric subtype of the nicotinic acetylcholine receptor (nAChR). This receptor subtype is a possible drug target for several neurological disorders. The cysteines are connected in the pairs Cys2-Cys8 and Cys3-Cys12, To date it is the only alpha-conotoxin with a 4/3 residue spacing between the cysteines, The structure of ImI has been determined by H-1 NMR spectroscopy in aqueous solution, The NMR structure is of high quality, with a backbone pairwise rmsd of 0.34 Angstrom for a family of 19 structures, and comprises primarily a series of nested beta turns. Addition of organic solvent does not perturb the solution structure. The first eight residues of ImI are identical to the larger, but related, conotoxin EpI and adopt a similar structure, despite a truncated second loop. Residues important for binding of ImI to the alpha 7 nAChR are all clustered on one face of the molecule. Once further binding data for EPI and ImI are available, the ImI structure will allow for design of novel alpha(7) nAChR-specific agonists and antagonists with a wide range of potential pharmaceutical applications.