950 resultados para resonance energy level
Resumo:
Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540–660nm superposed by the characteristic Sm3+ lines. Energy level splitting pattern of Sm3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm3+ takes up Ba2+ substitutional sites.
Resumo:
Human D-2Long (D-2L) and D-2Short (D-2S) dopamine receptor isoforms were modified at their N-terminus by the addition of a human immunodeficiency virus (HIV) or a FLAG epitope tag. The receptors were then expressed in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus system, and their oligomerization was investigated by means of co-immunoprecipitation and time-resolved fluorescence resonance energy transfer (FRET). [H-3] Spiperone labelled D-2 receptors in membranes prepared from Sf9 cells expressing epitope-tagged D-2L or D-2S receptors, with a pK(d) value of approximate to 10. Co-immunoprecipitation using antibodies specific for the tags showed constitutive homo-oligomerization of D-2L and D-2S receptors in Sf9 cells. When the FLAG-tagged D-2S and HIV-tagged D-2L receptors were co-expressed, co-immunoprecipitation showed that the two isoforms can also form hetero-oligomers in Sf9 cells. Time-resolved FRET with europium and XL665-labelled antibodies was applied to whole Sf9 cells and to membranes from Sf9 cells expressing epitope-tagged D-2 receptors. In both cases, constitutive homo-oligomers were revealed for D-2L and D-2S isoforms. Time-resolved FRET also revealed constitutive homo-oligomers in HEK293 cells expressing FLAG-tagged D-2S receptors. The D-2 receptor ligands dopamine, R-(-) propylnorapomorphine, and raclopride did not affect oligomerization of D-2L and D-2S in Sf9 and HEK293 cells. Human D-2 dopamine receptors can therefore form constitutive oligomers in Sf9 cells and in HEK293 cells that can be detected by different approaches, and D-2 oligomerization in these cells is not regulated by ligands.
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.
Resumo:
Male broilers were used to evaluate the effects of different energy levels in finisher diets and age of slaughter on performance, production pattern and carcass yield. Experimental design was a 2x3 factorial arrangement: energy level (ME) in the finisher diet (3,200 and 3,600 kcal ME/kg) and age of slaughter (42, 49 and 56 days), resulting in six treatments with four replicates. The finisher diet was fed only in the last week of the growing period. Characteristics evaluated were feed consumption (FC), body weight gain (WG), feed conversion (FC), energy intake (EI), caloric conversion (CC), efficiency production index, production pattern, and carcass yield. The results showed better WG and CC for broilers fed 3,200 kcal ME/kg finisher diet. Broilers slaughtered at 42 and 49 days of age had better performance and higher annual production than broilers slaughtered at 56 days of age. Carcass yield was influenced by slaughter age and better breast yield was seen at 49 and 56 days than at 42 days of age. It was concluded that 3,200 kcal ME/kg induced the best overall performance. Poultry houses were efficiently used when broilers were slaughtered at 42 days of age. Meat:bone ratio was improved for broilers slaughtered at 49 and 56 days of age.
Resumo:
This study evaluated the effects of strain, stocking density and dietary energy level on the feathering of broiler chickens. Four trials were carried out between September 2000 and April 2002. There were 10,685 broiler chicks from the strains Ross 308, Cobb 500, Hybro PG, Hubbard, MPK, and Isa Vedette. The bids were reared at stocking densities varying between 10 and 16 birds/m² and were given diets containing different metabolizable energy levels. Broiler feathering was evaluated either by atrributing scores from 1 to 10 to feather covering along the thigh and back (visual inspection), or by determining the percentage weight of the feathers at 28 and 42 days of age. Increasing rearing densities resulted in poorer feathering, mainly if 12 or 13 birds/m² were compared with 16 birds/m². The strains showed different feathering; it was better in Cobb 500 and MPK birds, whereas Hubbard birds showed poorer feathering, mostly along the back. The energy level in the diet has also affected feathering scores. Medium energy level resulted in better feathering along the back at 28 days, and the low level, in better feathering along the thigh at 35 days of age. Finally, feather scores were better in females than in males.
Resumo:
In this work we propose the study of the spectroscopy properties and the energy level location of Ce(3+) and Pr(3+) in Gd(2)O(2)S, along with the effects of Ce(4+) (Ce(2)O(2)S(2)) incorporation in Gd(2)O(2)S and Gd(2)O(2)S: Pr(3+) in order to understand the formation and position of the associated defects energy levels in relation to the band structure of Gd(2)O(2)S and Pr(3+) energy levels. Ce-, Pr(3+)-doped and Pr(3+), Ce-doped Gd(2)O(2)S were prepared by the sulfidization of a basic gadolinium carbonate with S(8) using H(2)/N(2) (3.0/97.0%) and air during the firing of the precursor. Samples were analyzed by X-ray diffraction in order to guarantee the formation of the Gd(2)O(2)S single phase. Diffuse reflectance spectroscopy and luminescent measurements (emission/excitation) were used to locate Ce(3+), Pr(3+) and defects energy levels in relation to the band structure of Gd(2)O(2)S. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Pigs are quite sensitive to high environmental temperatures and the thermoregulation mechanisms represent great expenses in energy for heating loss, reducing animal well-being and production performance, and altering carcass quality. The aim of this study was to assess the effects of sex and dietary energy level in growing-finishing pigs submitted to characteristic seasonal variation of temperature in subtropical humid climate, and to propose a mathematical model to predict growth performance and carcass characteristics. Twenty-eight crossbred growing-finishing pigs were randomly allotted to twelve treatments, in a 2x2x3 factorial trial (2 sex; 2 environmental conditions, and 3 energy levels). Heat stress condition (climatic chamber) showed temperatures of 31 oC at 7:00 and 22 oC at 17:00 (maximum of 33 °C) and thermal comfort condition (stall) showed temperatures of 18 °C at 7:00 and 24 °C (maximum of 27 °C). Pigs were fed ad libitum with diets containing 12.2 (low), 13.6 (medium) and 15.0 (high) MJ ME/ kg DM. Voluntary feed intake, daily weight gain, and final body weight were higher (P<0.01) at thermal comfort condition and were influenced by sex (P<0.01) in growing pigs. Feed to gain ratio decreased as the energy level increased (P<0.01), with values of 2.67, 2.59, and 2.32 (12.2, 13.6, and 15.0 MJ ME/kg DM, respectively). There was energy level and sex interaction only for daily weight gain. Regarding finishing pigs, environmental conditions also showed effects (P<0.01) on voluntary feed intake, daily weight gain, and final body weight. Performance of pigs was better at thermal comfort condition. Feed to gain ratio values were 3.55, 3.42, and 2.95 for low, medium, and high energy level, respectively. Interactions between energy level and sex were observed for voluntary feed intake, daily weight gain, and final body weight (P<0.05). Carcass yield and quality were affected by environmental condition and dietary energy level. Both hot and cold carcass weight increased as energy of ration increased. Cold carcass weight increased by 1.142 kg/MJ EM whereas backfat thickness was up to 252 mm/MJ EM. Longissimus thoracis muscle thickness was around 16 mm smaller in pigs under heat stress, but lean content was 2.68% higher in those animals. Regression equations were proposed to predict the performance values in the different situations studied.
Resumo:
The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.
Resumo:
A highly dangerous situations for tractor driver is the lateral rollover in operating conditions. Several accidents, involving tractor rollover, have indeed been encountered, requiring the design of a robust Roll-Over Protective Structure (ROPS). The aim of the thesis was to evaluate tractor behaviour in the rollover phase so as to calculate the energy absorbed by the ROPS to ensure driver safety. A Mathematical Model representing the behaviour of a generic tractor during a lateral rollover, with the possibility of modifying the geometry, the inertia of the tractor and the environmental boundary conditions, is proposed. The purpose is to define a method allowing the prediction of the elasto-plastic behaviour of the subsequent impacts occurring in the rollover phase. A tyre impact model capable of analysing the influence of the wheels on the energy to be absorbed by the ROPS has been also developed. Different tractor design parameters affecting the rollover behaviour, such as mass and dimensions, have been considered. This permitted the evaluation of their influence on the amount of energy to be absorbed by the ROPS. The mathematical model was designed and calibrated with respect to the results of actual lateral upset tests carried out on a narrow-track tractor. The dynamic behaviour of the tractor and the energy absorbed by the ROPS, obtained from the actual tests, showed to match the results of the model developed. The proposed approach represents a valuable tool in understanding the dynamics (kinetic energy) and kinematics (position, velocity, angular velocity, etc.) of the tractor in the phases of lateral rollover and the factors mainly affecting the event. The prediction of the amount of energy to be absorbed in some cases of accident is possible with good accuracy. It can then help in designing protective structures or active security devices.
Resumo:
The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.
Resumo:
Photon bursts from single diffusing donor-acceptor labeled macromolecules were used to measure intramolecular distances and identify subpopulations of freely diffusing macromolecules in a heterogeneous ensemble. By using DNA as a rigid spacer, a series of constructs with varying intramolecular donor-acceptor spacings were used to measure the mean and distribution width of fluorescence resonance energy transfer (FRET) efficiencies as a function of distance. The mean single-pair FRET efficiencies qualitatively follow the distance dependence predicted by Förster theory. Possible contributions to the widths of the FRET efficiency distributions are discussed, and potential applications in the study of biopolymer conformational dynamics are suggested. The ability to measure intramolecular (and intermolecular) distances for single molecules implies the ability to distinguish and monitor subpopulations of molecules in a mixture with different distances or conformational states. This is demonstrated by monitoring substrate and product subpopulations before and after a restriction endonuclease cleavage reaction. Distance measurements at single-molecule resolution also should facilitate the study of complex reactions such as biopolymer folding. To this end, the denaturation of a DNA hairpin was examined by using single-pair FRET.
Resumo:
Assembly and mutual proximities of α, β, and γc subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2Rα, IL-2Rβ, and γc subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2–10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2Rβ-α, γ-α, and γ-β pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a “triangular model” in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific α receptors with the β and/or γc subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.