208 resultados para reprogramming
Resumo:
Although porcine circovirus type 2 (PCV2)-associated diseases have been evaluated for known immune evasion strategies, the pathogenicity of these viruses remained concealed for decades. Surprisingly, the same viruses that cause panzootics in livestock are widespread in young, unaffected animals. Recently, evidence has emerged that circovirus-like viruses are also linked to complex diseases in humans, including children. We detected PCV2 genome-carrying cells in fetal pig thymi. To elucidate virus pathogenicity, we developed a new pig infection model by in vivo transfection of recombinant PCV2 and the immunosuppressant cofactor cyclosporine A. Using flow cytometry, immunofluorescence and fluorescence in situ hybridization, we found evidence that PCV2 dictates positive and negative selection of maturing T cells in the thymus. We show for the first time that PCV2-infected cells reside at the corticomedullary junction of the thymus. In diseased animals, we found polyclonal deletion of single positive cells (SPs) that may result from a loss of major histocompatibility complex class-II expression at the corticomedullary junction. The percentage of PCV2 antigen-presenting cells correlated with the degree of viremia and, in turn, the severity of the defect in thymocyte maturation. Moreover, the reversed T-cell receptor/CD4-coreceptor expression dichotomy on thymocytes at the CD4(+)CD8(interm) and CD4SP cell stage is viremia-dependent, resulting in a specific hypo-responsiveness of T-helper cells. We compare our results with the only other better-studied member of Circoviridae, chicken anemia virus. Our data show that PCV2 infection leads to thymocyte selection dysregulation, adding a valuable dimension to our understanding of virus pathogenicity.
Resumo:
Remote reprogramming capabilities are one of the major concerns in WSN platforms due to the limitations and constraints that low power wireless nodes poses, especially when energy efficiency during the reprogramming process is a critical factor for extending the battery life of the devices. Moreover, WSNs are based on low-rate protocols in which as greater the amount of data is sent, the more the possibility to lose packets during the transmitting process is. In order to overcome these limitations, in this work a novel on-the-fly reprogramming technique for modifying and updating the application running on the wireless sensor nodes is designed and implemented, based on a partial reprogramming mechanism that significantly reduces the size of the files to be downloaded to the nodes, therefore diminishing their power/time consumption. This powerful mechanism also addresses multi-experimental capabilities because it provides the possibility to download, manage, test and debug multiple applications into the wireless nodes, based on a memory map segmentation of the core. Being an on-the-fly reprogramming process, no additional resources to store and download the configuration file are needed.
Resumo:
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.
Resumo:
T cells are required for an effective adaptive immune response. The principal function of T cells is to promote efficient removal of foreign material by identifying and mounting a specific response to nonself. A decline in T cell function in aging is thought to contribute to reduced response to infection and vaccination and an increase in autoimmunity. This may in part be due to the age-related decrease in naïve CD4+ T cells and increase in antigen-experienced CD4+ T cells, loss of redox homeostasis, and impaired metabolic switching. Switching between subsets is triggered by the integration of extracellular signals sensed through surface receptors and the activation of discrete intracellular metabolic pathways. This article explores how metabolic programming and loss of redox homeostasis during aging may contribute to age-associated changes in T cell phenotype and function. © 2014 Elsevier Inc.
Resumo:
Recently, the field of cellular reprogramming has been revolutionized by works showing the potential to directly lineage-reprogram somatic cells into neurons upon overexpression of specific transcription factors. This technique offers a promising strategy to study the molecular mechanisms of neuronal specification, identify potential therapeutic targets for neurological diseases and eventually repair the central nervous system damaged by neurological conditions. Notably, studies with cortical astroglia revealed the high potential of these cells to reprogram into neurons using a single neuronal transcription factor. However, it remains unknown whether astroglia isolated from different regions of the central nervous system have the same neurogenic potential and generate induced neurons (iN) with similar phenotypes. Similarly, little is known about the fate that iNs could adopt after transplantation in the brain of host animals. In this study we compare the potential to reprogram astroglial cells isolated from the postnatal cerebral cortex and cerebellum into iNs both in vitro and in vivo using the proneural transcription factors Neurogenin-2 (Neurog2) and Achaete scute homolog-1 (Ascl1). Our results indicate cerebellar astroglia can be reprogrammed into induced neurons (iNs) with similar efficiencies to cerebral cortex astroglia. Notably however, while iNs in vitro adopt fates reminiscent of cortical or cerebellar neurons depending on the astroglial population used for reprogramming, in situ, after transplantation in the postnatal and adult mouse brain, iNs adopt fates compatible with the region of integration. Thus, our data suggest that the origin of the astroglial population used for lineage-reprogramming affects the fate of iNs in vitro, but this imprinting can be overridden by environmental cues after grafting.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Dissertation, 2016
Resumo:
Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. Yet little is known about this process and the mechanisms that control it. In this study, an interaction between the replication protein of Tobacco mosaic virus (TMV) and phloem specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading. Promoter expression studies show TMV 126/183 kDa interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CC). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus but not during infection with a non-interacting virus. In situ analysis of virus spread shows the inability of TMV variants to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at systemic movement than a non-interacting virus. Similarly, CC expression and over-accumulation of a degradation-resistant-interacting Aux/IAA protein was found to selectively inhibit TMV accumulation and phloem loading. Transcriptional expression studies demonstrate a role for interacting Aux/IAA proteins in the regulation of salicylic acid and jasmonic acid dependent host defense responses as well as virus specific movement factors including pectin methylesterase that are involved in regulating plasmodesmata size exclusion limits and promoting virus cell-to-cell movement. Further characterization of the phloem environment was done using two phloem specific promoters (pSUC2 and pSULTR2;2) to generate epitope-tagged polysomal-RNA complexes. Immuno-purification using the epitope tag allowed us to obtain mRNAs bound to polysomes (the translatome) specifically in phloem tissue. We found the phloem translatome is uniquely altered during TMV infection with 90% and 88% of genes down regulated in the pSUC2 and pSULTR2;2 phloem translatomes, compared to 31% of genes down regulated in the whole plant p35S translatome. Transcripts down regulated in phloem include genes involved in callose deposition at plasmodesmata, host defense responses, and RNA silencing. Combined, these findings indicate TMV reprograms gene expression within the vascular phloem as a means to enhance phloem loading and systemic spread.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
BACKGROUND: More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. RESULTS: We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization. CONCLUSIONS: Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.